6533b85afe1ef96bd12ba0cd

RESEARCH PRODUCT

Quantum walks as simulators of neutrino oscillations in a vacuum and matter

G Di MolfettaG Di MolfettaArmando Pérez

subject

Particle physicsAstrophysics::High Energy Astrophysical PhenomenaGeneral Physics and AstronomyFOS: Physical sciences01 natural sciences010305 fluids & plasmassymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]0103 physical sciencessupernovaQuantum walkDirac equationcontinuum limitflavor: oscillation010306 general physicsNeutrino oscillationComputingMilieux_MISCELLANEOUSMSW effectPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Quantum PhysicsHigh Energy Physics::Phenomenologysolar[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]neutrino: propagationSupernovaHigh Energy Physics - PhenomenologyDirac equation[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]neutrino: flavorsymbolsHigh Energy Physics::Experimentneutrino: oscillationNeutrinoAstrophysics - High Energy Astrophysical PhenomenaQuantum Physics (quant-ph)neutrino: Dirac[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Phenomenology (particle physics)

description

We analyze the simulation of Dirac neutrino oscillations using quantum walks, both in vacuum and in matter. We show that this simulation, in the continuum limit, reproduces a set of coupled Dirac equations that describe neutrino flavor oscillations, and we make use of this to establish a connection with neutrino phenomenology, thus allowing to fix the parameters of the simulation for a given neutrino experiment. We also analyze how matter effects for neutrino propagation can be simulated in the quantum walk. In this way, important features, such as the MSW effect, can be incorporated. Thus, the simulation of neutrino oscillations with the help of quantum walks might be useful to explore these effects in extreme conditions, such as the solar interior or supernovae, in a complementary way to existing experiments.

10.1088/1367-2630/18/10/103038https://hal.archives-ouvertes.fr/hal-02066122