6533b85bfe1ef96bd12ba191

RESEARCH PRODUCT

Influence of magnetization on the applied magnetic field in various AMR regenerators

Christian R.h. BahlA. MiraKaspar Kirstein NielsenP. NikaStefan GiurgeaRasmus BjørkC. EspanetT. De Larochelambert

subject

010302 applied physicsMaterials scienceElectromagnetMagnetic domainMagnetic energyCondensed matter physics[SPI.NRJ]Engineering Sciences [physics]/Electric powerDemagnetizing fieldGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciences[SPI.AUTO]Engineering Sciences [physics]/Automaticlaw.inventionCondensed Matter::Materials ScienceMagnetizationRemanencelaw0103 physical sciences[PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph]Magnetic pressure[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]Single domain0210 nano-technology

description

International audience; The aim of this work is to assess the influence of a magnetic sample on the applied magnetic field inside the air gap of a magnetic circuit. Different magnetic sources including an electromagnet, a permanent magnet in a soft ferromagnetic toroidal yoke, as well as 2D and 3D Halbach cylinders are considered, using a numerical model. Gadolinium is chosen as magnetic material for the sample, due to its strong magnetocaloric properties and its wide use in magnetic refrigeration prototypes. We find that using uniform theoretical demagnetizing factors for cylinders or spheres results in a deviation of less than 2% in the calculation of internal magnetic fields at temperatures above the Curie point of gadolinium. Below the Curie point, a stronger magnetization of the cylinders and spheres leads to a larger deviation which can reach 8% when using uniform demagnetizing factors for internal magnetic field calculations.

https://doi.org/10.1063/1.4986936