6533b85bfe1ef96bd12ba19c

RESEARCH PRODUCT

Path Integral Formulation of Quantum Electrodynamics

Walter DittrichMartin Reuter

subject

Physicssymbols.namesakeQuantum electrodynamicsPath integral formulationZero (complex analysis)symbolsInverseAbelian groupLagrangian

description

Let us consider a pure Abelian gauge theory given by the Lagrangian $$\displaystyle\begin{array}{rcl} \mathcal{L}_{\text{photon}}& =& -\frac{1} {4}F_{\mu \nu }F^{\mu \nu } \\ & =& -\frac{1} {4}\left (\partial _{\mu }A_{\nu } - \partial _{\nu }A_{\mu }\right )\left (\partial ^{\mu }A^{\nu } - \partial ^{\nu }A^{\mu }\right ){}\end{array}$$ (36.1) or, after integration by parts, $$\displaystyle\begin{array}{rcl} \mathcal{L}_{\text{photon}}& =& -\frac{1} {2}\left [-\left (\partial _{\mu }\partial ^{\mu }A_{\nu }\right )A^{\nu } + \left (\partial ^{\mu }\partial ^{\nu }A_{\mu }\right )A_{\nu }\right ] \\ & =& \frac{1} {2}A_{\mu }\left [g^{\mu \nu }\square - \partial ^{\mu }\partial ^{\nu }\right ]A_{\nu }\quad, {}\end{array}$$ (36.2) and therefore, the corresponding action is given by $$\displaystyle\begin{array}{rcl} S\left [A_{\mu }\right ]& =& \frac{1} {2}\int (dx)A_{\mu }(x)\left [g^{\mu \nu }\square - \partial ^{\mu }\partial ^{\nu }\right ]A_{\nu }(x) \\ & =& -\frac{1} {2}\int \frac{(dk)} {(2\pi )^{4}} \tilde{A}_{\mu }(k)\left [g^{\mu \nu }k^{2} - k^{\mu }k^{\nu }\right ]\tilde{A}_{\nu }(-k)\quad.{}\end{array}$$ (36.3) The operator \(M^{\mu \nu }(k) = \left (g^{\mu \nu }k^{2} - k^{\mu }k^{\nu }\right )\) has no inverse, because it has eigenfunctions k ν with eigenvalues zero: $$\displaystyle{ M^{\mu \nu }(k)k_{\nu } = \left (k^{\mu }k^{2} - k^{\mu }k^{2}\right ) = 0\quad. }$$ (36.4)

https://doi.org/10.1007/978-3-319-21677-5_36