6533b85bfe1ef96bd12ba1a3
RESEARCH PRODUCT
On stability of logarithmic tangent sheaves. Symmetric and generic determinants
Daniele FaenziSimone Marchesisubject
Pure mathematicsLogarithmMSC 14J60 14J17 14M12 14C05General Mathematics[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC]Commutative Algebra (math.AC)determinant01 natural sciencesStability (probability)Mathematics - Algebraic GeometryMathematics::Algebraic GeometryDimension (vector space)FOS: Mathematicsstability of sheavesProjective space0101 mathematicsAlgebraic Geometry (math.AG)MathematicsDegree (graph theory)010102 general mathematicsLogarithmic tangentTangentisolated singularitiesmoduli space of semistable sheavesMathematics - Commutative AlgebraModuli space010101 applied mathematicsGravitational singularityMathematics::Differential Geometry[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]description
We prove stability of logarithmic tangent sheaves of singular hypersurfaces D of the projective space with constraints on the dimension and degree of the singularities of D. As main application, we prove that determinants and symmetric determinants have stable logarithmic tangent sheaves and we describe an open dense piece of the associated moduli space.
year | journal | country | edition | language |
---|---|---|---|---|
2021-01-16 |