6533b85bfe1ef96bd12ba277

RESEARCH PRODUCT

Recent advances on CDK inhibitors: An insight by means of in silico methods

Marco TutoneAnna Maria Almerico

subject

0301 basic medicineQuantitative structure–activity relationshipMolecular dynamicIn silicoCDKQuantitative Structure-Activity RelationshipAntineoplastic AgentsComputational biologyMolecular Dynamics SimulationBioinformatics01 natural sciencesSerine03 medical and health sciencesCyclin-dependent kinaseNeoplasmsDrug DiscoveryAnimalsHumansProtein Kinase InhibitorsPharmacologyVirtual screeningHVTSbiologyChemistryKinaseQSARDrug Discovery3003 Pharmaceutical ScienceOrganic ChemistryGeneral MedicineCyclin-Dependent Kinases0104 chemical sciencesMolecular Docking Simulation010404 medicinal & biomolecular chemistry030104 developmental biologyDocking (molecular)Drug Designbiology.proteinComputer-Aided DesignIn silico methodMolecular modelling

description

The cyclin dependent kinases (CDKs) are a small family of serine/threonine protein kinases that can act as a potential therapeutic target in several proliferative diseases, including cancer. This short review is a survey on the more recent research progresses in the field achieved by using in silico methods. All the "armamentarium" available to the medicinal chemists (docking protocols and molecular dynamics, fragment-based, de novo design, virtual screening, and QSAR) has been employed to the discovery of new, potent, and selective inhibitors of cyclin dependent kinases. The results cited herein can be useful to understand the nature of the inhibitor-target interactions, and furnish an insight on the structural/molecular requirements necessary to achieve the required selectivity against cyclin dependent kinases over other types of kinases.

10.1016/j.ejmech.2017.07.067http://hdl.handle.net/10447/246296