6533b85bfe1ef96bd12ba28a

RESEARCH PRODUCT

Towards Responsible AI for Financial Transactions

Jan Erik ModalChristian W. OmlinCharl Maree

subject

FOS: Computer and information sciencesComputer Science - Machine LearningComputer scienceComputer Science - Artificial IntelligenceDecision tree02 engineering and technologyMachine learningcomputer.software_genreMachine Learning (cs.LG)Empirical research020204 information systems0202 electrical engineering electronic engineering information engineeringRobustness (economics)Categorical variableVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550Soundnessbusiness.industryDocument clusteringTransparency (behavior)ComputingMethodologies_PATTERNRECOGNITIONArtificial Intelligence (cs.AI)Financial transaction020201 artificial intelligence & image processingArtificial intelligencebusinesscomputer

description

Author's accepted manuscript. © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The application of AI in finance is increasingly dependent on the principles of responsible AI. These principles-explainability, fairness, privacy, accountability, transparency and soundness form the basis for trust in future AI systems. In this empirical study, we address the first principle by providing an explanation for a deep neural nenvork that is trained on a mixture of numerical, categorical and textual inputs for financial transaction classification. The explanation is achieved through (1) a feature importance analysis using Shapley additive explanations (SHAP) and (2) a hybrid approach of text clustering and decision tree classifiers. We then test the robustness of the model by exposing it to a targeted evasion attack, leveraging the knowledge we gained about the model through the extracted explanation.

https://dx.doi.org/10.48550/arxiv.2206.02419