6533b85bfe1ef96bd12ba2b1
RESEARCH PRODUCT
Hydrogen and helium films as model systems of wetting
Paul LeidererStephan HerminghausJens VorbergDietmar ReineltRobert N. J. ConradtHolger UlmerHartmut GauM. Przyrembelsubject
Materials scienceHydrogenCondensed matter physicsLiquid heliumTriple pointsurface plasmonSurface plasmonquantium liquidsGeneral Physics and Astronomychemistry.chemical_elementWettinglaw.inventionCondensed Matter::Soft Condensed MatterPhysics::Fluid DynamicschemistryWetting transitionlawChemical physicsddc:530DewettingWettingHeliumdescription
Optical experiments on the wetting properties of liquid 4He and molecular hydrogen are reviewed. Hydrogen films on noble metal surfaces serve as model systems for studying triple point wetting, a continuous transition between wetting and non-wetting. By means of optically excited surface plasmons, the adsorbed film thickness for temperatures around, and far below, the bulk melting temperature is measured, and the physical mechanisms responsible for the transition are elucidated. Possible applications for other experiments in pure and applied research are discussed. Thin films are droplets of liquid helium are studied on cesium surfaces, on which there is a first order wetting transition. Our studies concentrate on dynamical observations via surface plasmon microscopy, which provide insight into the morphology of liquid helium droplets spreading at different temperatures. Features corresponding to pinning forces, the prewetting line, and the Kosterlitz-Thouless transition are clearly observed.
year | journal | country | edition | language |
---|---|---|---|---|
1997-01-01 | Annalen der Physik |