6533b85bfe1ef96bd12baabf
RESEARCH PRODUCT
Cell culture models of higher complexity in tissue engineering and regenerative medicine.
Sabine FuchsRonald E. UngerMaria Iris HermannsKirsten PetersCharles James Kirkpatricksubject
ScaffoldBiophysicsBiomedical EngineeringCell Culture TechniquesBioengineeringBiocompatible MaterialsBiologyRegenerative MedicineRegenerative medicineBiomaterialsTissue Culture Techniques3D cell cultureTissue engineeringAnimalsHumansNanotechnologyRegenerationInflammationWound HealingTissue EngineeringRegeneration (biology)BiomaterialEndothelial CellsPredictive valueCoculture TechniquesMechanics of MaterialsCell cultureCeramics and CompositesBiochemical engineeringBiomedical engineeringdescription
Cell culture techniques have tended to be used in biomaterial research as a screening method prior to embarking on specific in vivo experimentation. This presentation aims at showing that it is possible to develop more sophisticated in vitro systems using primary human cells in co-culture with other cell types and biomaterials in a three-dimensional setting. While the predictive value of such systems is still not proven these models can be employed to unravel the complexity of biological systems in order to understand molecular mechanisms of cell-cell and cell-material interactions. The brief overview is under the headings of basic principles of relevant culture systems, the study of inflammation and the healing response, scenarios for specific biomaterial applications and future directions. How human endothelial cells can be usefully incorporated into more complex cell culture models is presented as an example of how relevant questions in tissue engineering and regenerative medicine can be addressed. The central tenet of this paper is that it is possible to refine in vitro methodology using cells of human origin to establish relevant assay systems that more closely simulate the cellular and molecular microenvironment encountered in a specific situation of regeneration using biomaterials.
year | journal | country | edition | language |
---|---|---|---|---|
2007-08-07 | Biomaterials |