6533b85bfe1ef96bd12baadd

RESEARCH PRODUCT

Microwave potentials and optimal control for robust quantum gates on an atom chip

Jakob ReichelPhilipp TreutleinTommaso CalarcoM. A. CironeAntonio NegrettiTheodor W. Hänsch

subject

PhysicsQuantum PhysicsFABRICATIONFOS: Physical sciencesOptimal controlAtomic and Molecular Physics and OpticsQuantum circuitComputer Science::Hardware ArchitectureQuantum gateComputer Science::Emerging TechnologiesControlled NOT gateQuantum mechanicsQubitElectronic engineeringSCATTERINGQuantum Physics (quant-ph)NEUTRAL ATOMSMicrowaveMICROCHIP TRAPSQuantum computerCoherence (physics)

description

We propose a two-qubit collisional phase gate that can be implemented with available atom chip technology, and present a detailed theoretical analysis of its performance. The gate is based on earlier phase gate schemes, but uses a qubit state pair with an experimentally demonstrated, very long coherence lifetime. Microwave near-fields play a key role in our implementation as a means to realize the state-dependent potentials required for conditional dynamics. Quantum control algorithms are used to optimize gate performance. We employ circuit configurations that can be built with current fabrication processes, and extensively discuss the impact of technical noise and imperfections that characterize an actual atom chip. We find an overall infidelity compatible with requirements for fault-tolerant quantum computation.

https://publications.cnr.it/doc/182