0000000000306632

AUTHOR

Antonio Negretti

A simple quantum gate with atom chips

We present a simple scheme for implementing an atomic phase gate using two degrees of freedom for each atom and discuss its realization with cold rubidium atoms on atom chips. We investigate the performance of this collisional phase gate and show that gate operations with high fidelity can be realized in magnetic traps that are currently available on atom chips.

research product

Generalised Kronig-Penney model for ultracold atomic quantum systems

We study the properties of a quantum particle interacting with a one dimensional structure of equidistant scattering centres. We derive an analytical expression for the dispersion relation and for the Bloch functions in the presence of both even and odd scattering waves within the pseudopotential approximation. This generalises the well-known solid-state physics text-book result known as the Kronig-Penney model. Our generalised model can be used to describe systems such as degenerate Fermi gases interacting with ions or with another neutral atomic species confined in an optical lattice, thus enabling the investigation of polaron or Kondo physics within a simple formalism. We focus our atten…

research product

COMPLEXITY, NOISE AND QUANTUM INFORMATION ON ATOM CHIPS

The realization of quantum logic gates with neutral atoms on atom chips is investigated, including realistic features, such as noise and actual experimental setups.

research product

Emulating Solid-State Physics with a Hybrid System of Ultracold Ions and Atoms

We propose and theoretically investigate a hybrid system composed of a crystal of trapped ions coupled to a cloud of ultracold fermions. The ions form a periodic lattice and induce a band structure in the atoms. This system combines the advantages of scalability and tunability of ultracold atomic systems with the high fidelity operations and detection offered by trapped ion systems. It also features close analogies to natural solid-state systems, as the atomic degrees of freedom couple to phonons of the ion lattice, thereby emulating a solid-state system. Starting from the microscopic many-body Hamiltonian, we derive the low energy Hamiltonian including the atomic band structure and give an…

research product

Quantum dynamics of an atomic double-well system interacting with a trapped ion

We theoretically analyze the dynamics of an atomic double-well system with a single ion trapped in its center. We find that the atomic tunnelling rate between the wells depends both on the spin of the ion via the short-range spin-dependent atom-ion scattering length and on its motional state with tunnelling rates reaching hundreds of Hz. A protocol is presented that could transport an atom from one well to the other depending on the motional (Fock) state of the ion within a few ms. This phonon-atom coupling is of interest for creating atom-ion entangled states and may form a building block in constructing a hybrid atom-ion quantum simulator. We also analyze the effect of imperfect ground st…

research product

Controlled long-range interactions between Rydberg atoms and ions

We theoretically investigate trapped ions interacting with atoms that are coupled to Rydberg states. The strong polarizabilities of the Rydberg levels increases the interaction strength between atoms and ions by many orders of magnitude, as compared to the case of ground state atoms, and may be mediated over micrometers. We calculate that such interactions can be used to generate entanglement between an atom and the motion or internal state of an ion. Furthermore, the ion could be used as a bus for mediating spin-spin interactions between atomic spins in analogy to much employed techniques in ion trap quantum simulation. The proposed scheme comes with attractive features as it maps the bene…

research product

Theoretical analysis of a realistic atom-chip quantum gate

9 pages, 5 color figures; International audience; We present a detailed, realistic analysis of the implementation of a proposal for a quantum phase gate based on atomic vibrational states, specializing it to neutral rubidium atoms on atom chips. We show how to create a double-well potential with static currents on the atom chips, using for all relevant parameters values that are achieved with present technology. The potential barrier between the two wells can be modified by varying the currents in order to realize a quantum phase gate for qubit states encoded in the atomic external degree of freedom. The gate performance is analyzed through numerical simulations; the operation time is ~10 m…

research product

Mixed internal-external state approach for quantum computation with neutral atoms on atom chips

We present a realistic proposal for the storage and processing of quantum information with cold Rb atoms on atom chips. The qubit states are stored in hyperfine atomic levels with long coherence time, and two-qubit quantum phase gates are realized using the motional states of the atoms. Two-photon Raman transitions are used to transfer the qubit information from the internal to the external degree of freedom. The quantum phase gate is realized in a double-well potential created by slowly varying dc currents in the atom chip wires. Using realistic values for all experimental parameters (currents, magnetic fields, ...) we obtain high gate fidelities (above 99.9%) in short operation times (~ 1…

research product

Microwave potentials and optimal control for robust quantum gates on an atom chip

We propose a two-qubit collisional phase gate that can be implemented with available atom chip technology, and present a detailed theoretical analysis of its performance. The gate is based on earlier phase gate schemes, but uses a qubit state pair with an experimentally demonstrated, very long coherence lifetime. Microwave near-fields play a key role in our implementation as a means to realize the state-dependent potentials required for conditional dynamics. Quantum control algorithms are used to optimize gate performance. We employ circuit configurations that can be built with current fabrication processes, and extensively discuss the impact of technical noise and imperfections that charac…

research product

Impact of many-body correlations on the dynamics of an ion-controlled bosonic Josephson junction

We investigate an atomic ensemble of interacting bosons trapped in a symmetric double well potential in contact with a single tightly trapped ion which has been recently proposed [R. Gerritsma et al., Phys. Rev. Lett. 109, 080402 (2012)] as a source of entanglement between a Bose-Einstein condensate and an ion. Compared to the previous study, the present work aims at performing a detailed and accurate many-body analysis of such combined atomic quantum system by means of the ab-initio multi-configuration time-dependent Hartree method for bosons, which allows to take into account all correlations in the system. The analysis elucidates the importance of quantum correlations in the bosonic ense…

research product