6533b857fe1ef96bd12b4486

RESEARCH PRODUCT

Controlled long-range interactions between Rydberg atoms and ions

T. SeckerT. SeckerAlexander W. GlaetzleAlexander W. GlaetzleRene GerritsmaRene GerritsmaAntonio Negretti

subject

PhysicsCondensed Matter::Quantum GasesQuantum PhysicsAtomic Physics (physics.atom-ph)Quantum simulatorFOS: Physical sciencesQuantum entanglement7. Clean energy01 natural sciences3. Good health010305 fluids & plasmasPhysics - Atomic Physicssymbols.namesake0103 physical sciencesAtomRydberg atomQuantum systemRydberg formulasymbolsPhysics::Atomic PhysicsQuantum informationAtomic physics010306 general physicsQuantum Physics (quant-ph)Trapped ion quantum computer

description

We theoretically investigate trapped ions interacting with atoms that are coupled to Rydberg states. The strong polarizabilities of the Rydberg levels increases the interaction strength between atoms and ions by many orders of magnitude, as compared to the case of ground state atoms, and may be mediated over micrometers. We calculate that such interactions can be used to generate entanglement between an atom and the motion or internal state of an ion. Furthermore, the ion could be used as a bus for mediating spin-spin interactions between atomic spins in analogy to much employed techniques in ion trap quantum simulation. The proposed scheme comes with attractive features as it maps the benefits of the trapped ion quantum system onto the atomic one without obviously impeding its intrinsic scalability. No ground state cooling of the ion or atom is required and the setup allows for full dynamical control. Moreover, the scheme is to a large extent immune to the micromotion of the ion. Our findings are of interest for developing hybrid quantum information platforms and for implementing quantum simulations of solid state physics.

10.1103/physreva.94.013420http://dx.doi.org/10.1103/PhysRevA.94.013420