0000000000066937

AUTHOR

Rene Gerritsma

showing 8 related works from this author

Entanglement-enhanced detection of single-photon scattering events

2013

The ability to detect the interaction of light and matter at the single-particle level is becoming increasingly important for many areas of science and technology. The absorption or emission of a photon on a narrow transition of a trapped ion can be detected with near unit probability, thereby enabling the realization of ultra-precise ion clocks and quantum information processing applications. Extending this sensitivity to broad transitions is challenging due to the difficulty of detecting the rapid photon scattering events in this case. Here, we demonstrate a technique to detect the scattering of a single photon on a broad optical transition with high sensitivity. Our approach is to use an…

PhysicsQuantum PhysicsPhotonAtomic Physics (physics.atom-ph)ScatteringFOS: Physical sciencesQuantum entanglement01 natural sciencesAtomic and Molecular Physics and OpticsPhysics - Atomic Physics010305 fluids & plasmasElectronic Optical and Magnetic MaterialsIonMomentum0103 physical sciencesSensitivity (control systems)Atomic physicsQuantum Physics (quant-ph)010306 general physicsSpectroscopyPhoton scatteringNature Photonics
researchProduct

Generalised Kronig-Penney model for ultracold atomic quantum systems

2014

We study the properties of a quantum particle interacting with a one dimensional structure of equidistant scattering centres. We derive an analytical expression for the dispersion relation and for the Bloch functions in the presence of both even and odd scattering waves within the pseudopotential approximation. This generalises the well-known solid-state physics text-book result known as the Kronig-Penney model. Our generalised model can be used to describe systems such as degenerate Fermi gases interacting with ions or with another neutral atomic species confined in an optical lattice, thus enabling the investigation of polaron or Kondo physics within a simple formalism. We focus our atten…

PhysicsCondensed Matter::Quantum GasesOptical latticeQuantum PhysicsBose gasDegenerate energy levelsFOS: Physical sciencesCondensed Matter Physics3. Good healthElectronic Optical and Magnetic MaterialsPseudopotentialsymbols.namesakeQuantum defectParticle in a one-dimensional latticeQuantum Gases (cond-mat.quant-gas)Quantum mechanicsQuantum electrodynamicssymbolsHamiltonian (quantum mechanics)Quantum Physics (quant-ph)Condensed Matter - Quantum GasesQuantum
researchProduct

Rydberg Excitation of a Single Trapped Ion.

2015

We demonstrate excitation of a single trapped cold $^{40}$Ca$^+$ ion to Rydberg levels by laser radiation in the vacuum-ultraviolet at 122 nm wavelength. Observed resonances are identified as 3d$^2$D$_{3/2}$ to 51 F, 52 F and 3d$^2$D$_{5/2}$ to 64F. We model the lineshape and our results imply a large state-dependent coupling to the trapping potential. Rydberg ions are of great interest for future applications in quantum computing and simulation, in which large dipolar interactions are combined with the superb experimental control offered by Paul traps.

Condensed Matter::Quantum GasesPhysicsQuantum PhysicsAtomic Physics (physics.atom-ph)FOS: Physical sciencesGeneral Physics and AstronomyTrappingCoupling (probability)01 natural sciencesIon trappingPhysics - Atomic Physics010305 fluids & plasmasIonsymbols.namesakeDipole0103 physical sciencessymbolsRydberg formulaRydberg matterPhysics::Atomic PhysicsAtomic physicsQuantum Physics (quant-ph)010306 general physicsExcitationPhysical review letters
researchProduct

Emulating Solid-State Physics with a Hybrid System of Ultracold Ions and Atoms

2013

We propose and theoretically investigate a hybrid system composed of a crystal of trapped ions coupled to a cloud of ultracold fermions. The ions form a periodic lattice and induce a band structure in the atoms. This system combines the advantages of scalability and tunability of ultracold atomic systems with the high fidelity operations and detection offered by trapped ion systems. It also features close analogies to natural solid-state systems, as the atomic degrees of freedom couple to phonons of the ion lattice, thereby emulating a solid-state system. Starting from the microscopic many-body Hamiltonian, we derive the low energy Hamiltonian including the atomic band structure and give an…

PhysicsCondensed Matter::Quantum GasesQuantum PhysicsSolid-state physicsPhononGeneral Physics and AstronomyFOS: Physical sciencesFermion01 natural sciences010305 fluids & plasmasIonsymbols.namesakeQuantum Gases (cond-mat.quant-gas)Hybrid systemLattice (order)0103 physical sciencessymbolsPhysics::Atomic PhysicsAtomic physics010306 general physicsHamiltonian (quantum mechanics)Electronic band structureCondensed Matter - Quantum GasesQuantum Physics (quant-ph)
researchProduct

Quantum dynamics of an atomic double-well system interacting with a trapped ion

2014

We theoretically analyze the dynamics of an atomic double-well system with a single ion trapped in its center. We find that the atomic tunnelling rate between the wells depends both on the spin of the ion via the short-range spin-dependent atom-ion scattering length and on its motional state with tunnelling rates reaching hundreds of Hz. A protocol is presented that could transport an atom from one well to the other depending on the motional (Fock) state of the ion within a few ms. This phonon-atom coupling is of interest for creating atom-ion entangled states and may form a building block in constructing a hybrid atom-ion quantum simulator. We also analyze the effect of imperfect ground st…

PhysicsCondensed Matter::Quantum GasesQuantum PhysicsQuantum dynamicsQuantum simulatorFOS: Physical sciences7. Clean energyIon trappingAtomic and Molecular Physics and OpticsIonPhysics::Plasma PhysicsAtomIon trapPhysics::Atomic PhysicsAtomic physicsSpin (physics)Quantum Physics (quant-ph)Trapped ion quantum computer
researchProduct

Controlled long-range interactions between Rydberg atoms and ions

2016

We theoretically investigate trapped ions interacting with atoms that are coupled to Rydberg states. The strong polarizabilities of the Rydberg levels increases the interaction strength between atoms and ions by many orders of magnitude, as compared to the case of ground state atoms, and may be mediated over micrometers. We calculate that such interactions can be used to generate entanglement between an atom and the motion or internal state of an ion. Furthermore, the ion could be used as a bus for mediating spin-spin interactions between atomic spins in analogy to much employed techniques in ion trap quantum simulation. The proposed scheme comes with attractive features as it maps the bene…

PhysicsCondensed Matter::Quantum GasesQuantum PhysicsAtomic Physics (physics.atom-ph)Quantum simulatorFOS: Physical sciencesQuantum entanglement7. Clean energy01 natural sciences3. Good health010305 fluids & plasmasPhysics - Atomic Physicssymbols.namesake0103 physical sciencesAtomRydberg atomQuantum systemRydberg formulasymbolsPhysics::Atomic PhysicsQuantum informationAtomic physics010306 general physicsQuantum Physics (quant-ph)Trapped ion quantum computerPhysical Review A
researchProduct

Entangled states of trapped ions allow measuring the magnetic field gradient produced by a single atomic spin

2012

Using trapped ions in an entangled state we propose detecting a magnetic dipole of a single atom at distance of a few $\mu$m. This requires a measurement of the magnetic field gradient at a level of about 10$^{-13}$ Tesla/$\mu$m. We discuss applications e.g. in determining a wide variation of ionic magnetic moments, for investigating the magnetic substructure of ions with a level structure not accessible for optical cooling and detection,and for studying exotic or rare ions, and molecular ions. The scheme may also be used for measureing spin imbalances of neutral atoms or atomic ensembles trapped by optical dipole forces. As the proposed method relies on techniques well established in ion t…

Condensed Matter::Quantum GasesPhysicsQuantum PhysicsMagnetic momentEnergetic neutral atomAtomic Physics (physics.atom-ph)FOS: Physical sciencesGeneral Physics and AstronomyPhysics - Atomic PhysicsIonDipoleLaser coolingAtomPhysics::Atomic PhysicsIon trapAtomic physicsQuantum Physics (quant-ph)Spin (physics)EPL (Europhysics Letters)
researchProduct

Impact of many-body correlations on the dynamics of an ion-controlled bosonic Josephson junction

2016

We investigate an atomic ensemble of interacting bosons trapped in a symmetric double well potential in contact with a single tightly trapped ion which has been recently proposed [R. Gerritsma et al., Phys. Rev. Lett. 109, 080402 (2012)] as a source of entanglement between a Bose-Einstein condensate and an ion. Compared to the previous study, the present work aims at performing a detailed and accurate many-body analysis of such combined atomic quantum system by means of the ab-initio multi-configuration time-dependent Hartree method for bosons, which allows to take into account all correlations in the system. The analysis elucidates the importance of quantum correlations in the bosonic ense…

[PHYS]Physics [physics]Condensed Matter::Quantum GasesJosephson effectPhysicsQuantum PhysicsAb initioFOS: Physical sciencesQuantum entanglementHartree01 natural sciences010305 fluids & plasmasIonMCTDHQuantum Gases (cond-mat.quant-gas)Quantum mechanics0103 physical sciencesQuantum system[CHIM]Chemical SciencesQuantum Physics (quant-ph)Condensed Matter - Quantum Gases010306 general physicsQuantumBosonPhysical Review A. General Physics
researchProduct