6533b85bfe1ef96bd12bab17
RESEARCH PRODUCT
A parsimonious model for generating arbitrage-free scenario trees
Andrea ConsiglioA. CarolloStavros A. ZeniosAndrea ConsiglioA. CarolloStavros A. Zeniossubject
Mathematical optimizationMatching (statistics)021103 operations researchStochastic process05 social sciencesPricing in incomplete market0211 other engineering and technologiesStochastic programming02 engineering and technologyStochastic programmingConvex lower boundingSettore SECS-S/06 -Metodi Mat. dell'Economia e d. Scienze Attuariali e Finanz.Bounding overwatch0502 economics and businessPricing in incomplete marketsStochastic optimizationGlobal optimizationArbitrage050207 economicsGeneral Economics Econometrics and FinanceGlobal optimizationFinanceScenario treeCurse of dimensionalityMathematicsdescription
Simulation models of economic, financial and business risk factors are widely used to assess risks and support decision-making. Extensive literature on scenario generation methods aims at describing some underlying stochastic processes with the least number of scenarios to overcome the ‘curse of dimensionality’. There is, however, an important requirement that is usually overlooked when one departs from the application domain of security pricing: the no-arbitrage condition. We formulate a moment matching model to generate multi-factor scenario trees for stochastic optimization satisfying no-arbitrage restrictions with a minimal number of scenarios and without any distributional assumptions. The resulting global optimization problem is quite general. However, it is non-convex and can grow significantly with the number of risk factors, and we develop convex lower bounding techniques for its solution exploiting the special structure of the problem. Applications to some standard problems from the literature show that this is a robust approach for tree generation. We use it to price a European basket option in complete and incomplete markets.
year | journal | country | edition | language |
---|---|---|---|---|
2016-02-01 |