6533b85bfe1ef96bd12babb2
RESEARCH PRODUCT
Phosphinotripeptidic Inhibitors of Leucylaminopeptidases
Rafał LatajkaZouhair Es SbaiMichał JewgińskiKinga HaremzaMałgorzata PawełczakFrancisco PalaciosJesús M. De Los SantosBartosz Oszywasubject
0106 biological sciences0301 basic medicineModels MolecularMolecular modelQH301-705.5StereochemistryPhosphinesProtein ConformationSwineLAP inhibitorsligand-enzyme interactionPhosphinate01 natural sciencesAminopeptidaseCatalysisArticleInorganic Chemistry03 medical and health sciencesResidue (chemistry)phosphinate pseudopeptideLeucyl AminopeptidaseMoietyPeptide bondAnimalsBiology (General)Physical and Theoretical ChemistryEnzyme InhibitorsQD1-999Molecular BiologyMagnesium ionmolecular modeling; LAP inhibitors; barley aminopeptidase inhibitor; phosphinate pseudopeptide; ligand-enzyme interaction; organophosphorus compoundSpectroscopyChemistrymolecular modelingOrganic ChemistryGeneral Medicineorganophosphorus compoundPeptide FragmentsComputer Science ApplicationsChemistry030104 developmental biologybarley aminopeptidase inhibitorHordeum vulgare010606 plant biology & botanydescription
Phosphinate pseudopeptide are analogs of peptides containing phosphinate moiety in a place of the amide bond. Due to this, the organophosphorus fragment resembles the tetrahedral transition state of the amide bond hydrolysis. Additionally, it is also capable of coordinating metal ions, for example, zinc or magnesium ions. These two properties of phosphinate pseudopeptides make them an ideal candidate for metal-related protease inhibitors. This research investigates the influence of additional residue in the P2 position on the inhibitory properties of phosphinopeptides. The synthetic strategy is proposed, based on retrosynthetic analysis. The N-C-P bond formation in the desired compounds is conveniently available from the three-component condensation of appropriate amino components, aldehydes, and hypophosphorous acid. One of the crucial synthetic steps is the careful selection of the protecting groups for all the functionals. Determination of the inhibitor activity of the obtained compounds has been done using UV-Vis spectroscopy and standard substrate L-Leu-p-nitroanilide toward the enzymes isolated from the porcine kidney (SsLAP, Sus scrofa Leucine aminopeptidase) and barley seeds (HvLAP, Hordeum vulgare Leucine aminopeptidase). An efficient procedure for the preparation of phosphinotripeptides has been performed. Activity test shown that introduction of additional residue into P2 position obtains the micromolar range inhibitors of SsLAP and HvLAP. Moreover, careful selection of the residue in the P2 position should improve its selectivity toward mammalian and plant leucyl aminopeptidases. This research was funded by the Polish Ministry of Science and Higher Education (PMSHE) for the Faculty of Chemistry of Wrocław University of Science and Technology and by Wroclaw Research Center EIT+ under the project “Biotechnologies and advanced medical technologies—BioMed”, grant number POIG 01.01.02-02-003/08-00, 00 financed from the European Regional Development Fund (Operational Programme Innovative Economy, 1.1.2. B. O. is recipient of a Ph.D. fellowship from a project funded by the European Social Found. Financial support by the Ministerio de Ciencia, Innovación y Universidades (MCIU), Agencia Estatal de Investigación (AEI) y Fondo Europeo de Desarrollo Regional (FEDER) (RTI2018-101818-B-I00, UE), and Gobierno Vasco (GV), (IT 992-16) is gratefully acknowledged.
year | journal | country | edition | language |
---|---|---|---|---|
2021-05-11 | International Journal of Molecular Sciences; Volume 22; Issue 10; Pages: 5090 |