6533b85bfe1ef96bd12babd0
RESEARCH PRODUCT
Effects of an Earth-strength magnetic field on electrical activity of pineal cells
P. SemmT. SchneiderL. Vollrathsubject
Malemedicine.medical_specialtyMultidisciplinaryGuinea PigsAction PotentialsBrainBiologyPineal GlandMagnetic fieldMagneticsZugunruheElectrophysiologyEndocrinologyInternal medicinemedicineBiophysicsAnimalsPineal organCircadian rhythmdescription
Although magnetic fields can influence biological systems, including those of man and other vertebrates1–5, no central nervous structure has been identified that might be involved in their detection. From a theoretical point of view, the pineal organ might be such a structure for the following reasons: (1) It is involved in the regulation of circadian rhythms6 and is thus essential for migratory restlessness (‘Zugunruhe’)7. Orientation at that time can be altered by an artificial magnetic field (MF) with a direction differing by 90° from that of the Earth. Circadian rhythms can be inhibited from phase shifting by compensation of the Earth's MF and can be influenced by an artificial MF8. (2) The pineal organ is strongly dependent on its sympathetic innervation6 and the sympatho-adrenergic system as a whole is sensitive to magnetic stimuli9. (3) The pineal organ is a light-sensitive time-keeping organ10,11 and could form part of a combined compass–solar-clock system, which has been postulated for maintaining orientation in birds12. We have therefore investigated the effect of a MF on electrophysiological activity of the guinea pig pineal organ, which is a useful system for such studies on individual cells11,13. We report here that activity was depressed by an induced MF and restored when the MF was inverted.
year | journal | country | edition | language |
---|---|---|---|---|
1980-12-11 | Nature |