6533b85bfe1ef96bd12bacc0
RESEARCH PRODUCT
Fertigation Management and Growth-Promoting Treatments Affect Tomato Transplant Production and Plant Growth after Transplant
Alessandra MoncadaAlessandro EspositoFilippo VetranoAlessandro Micelisubject
0106 biological sciencesFertigationPlant growthvegetable nurserypre-transplanting nutritional conditioningSettore AGR/04 - Orticoltura E Floricolturaengineering.materialpost-transplant growth01 natural sciencestransplant productionlcsh:Agriculturechemistry.chemical_compoundNutrientbacterial biostimulantGibberellic acidbiologyInoculationSolanum lycopersicum ‘Marmande’ tomato seedlings vegetable nursery transplant production pre-transplanting nutritional conditioning bacterial biostimulant Bacillus spp. PGPR gibberellic acid post-transplant growthfungilcsh:Sfood and beverages04 agricultural and veterinary sciencesbiology.organism_classificationHorticulturetomato seedlingschemistrySeedling<i>Solanum lycopersicum</i> ‘Marmande’PGPR040103 agronomy & agricultureengineering0401 agriculture forestry and fisheriesFertilizerSolanum<i>Bacillus</i> spp.Agronomy and Crop Sciencegibberellic acid010606 plant biology & botanydescription
Plant biostimulants are of interest as they can stimulate plant growth and increase resource utilization. There is still no information on the use of plant growth-promoters under variable nutritional conditions in the nursery and the effects on tomato seedling growth and plant performance after transplant. This study aimed to evaluate the suitability of gibberellic acid (GA3) or bacterial biostimulant treatments to enhance the growth and quality of greenhouse-grown tomato (Solanum lycopersicum &lsquo
year | journal | country | edition | language |
---|---|---|---|---|
2020-10-03 |