6533b85bfe1ef96bd12bb3d8
RESEARCH PRODUCT
Ab Initio Studies of Triplet-State Properties for Organic Semiconductor Molecules
Dage SundholmAndreas KöhnMathias Pabstsubject
Absorption spectroscopyChemistryExcitonAb initio02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOrganic semiconductorGeneral EnergyChemical physicsComputational chemistryOLEDMoleculePhysical and Theoretical ChemistryTriplet state0210 nano-technologyAbsorption (electromagnetic radiation)description
Triplet–triplet annihilation (TTA) leads to a reduced efficiency of organic light-emitting diodes (OLEDs) at high current densities. Spacial confinement of the triplet excitons, which is mainly dependent on triplet energy differences, can reduce the TTA rate. Therefore, a deliberate choice of the organic semiconductor materials with particular attention to their triplet energies can help to considerably increase the device efficiency. Organic solid-state lasers are, on the other hand, efficiently quenched by singlet–triplet annihilation (STA), which is closely related to the triplet–triplet absorption of the organic semiconductors. To establish a useful set of parameters related to the processes in organic semiconducting devices, we provide theoretical estimates for the triplet energy of 31 organic semiconductor molecules using state-of-the art ab initio quantum chemical methods. For a subset of 22 molecules, the triplet–triplet absorption spectra were calculated as well. We also discuss related features ...
year | journal | country | edition | language |
---|---|---|---|---|
2012-07-17 | The Journal of Physical Chemistry C |