6533b85bfe1ef96bd12bb456

RESEARCH PRODUCT

How far the substituent effects in disubstituted cyclohexa-1,3-diene derivatives differ from those in bicyclo[2.2.2]octane and benzene?

Konstantin S. VaraksinMozhgan ShahamirianTadeusz M. KrygowskiAnna JezuitaKrzysztof EjsmontTomasz SiodłaHalina Szatylowicz

subject

Bicyclic moleculeDienesubstituent effects010405 organic chemistrymolecular modelingSubstituent010402 general chemistryCondensed Matter PhysicsResonance (chemistry)electronic structure01 natural sciencesQuantum chemistryMedicinal chemistry0104 chemical scienceschemistry.chemical_compoundchemistrysubstituent effect stabilization energyMoietyPhysical and Theoretical ChemistryBenzenecharge of the substituent active regionOctane

description

Substituents effects in cyclic diene derivatives are studied using quantum chemical modeling and compared to the corresponding effects in aromatic (benzene) and fully saturated (bicyclo[2.2.2]octane) compounds. In particular, electronic properties of the fixed group Y in a series of 3- and 4-X-substituted cyclohexa-1,3-diene-Y derivatives (where Y = NO2, COOH, COO− OH, O−, NH2, and X = NMe2, NH2, OH, OMe, Me, H, F, Cl, CF3, CN, CHO, COMe, CONH2, COOH, NO2, NO) are examined using the B3LYP/6-311++G(d,p) method. For this purpose, quantum chemistry models of the substituent effect: cSAR (charge of the substituent active region) and SESE (substituent effect stabilization energy) as well as traditional Hammett’s substituent constants (σ) and their inductive (F) and resonance (R) components are used. π-electron delocalization of the transmitting moiety (butadiene fragment of the CHD) is described by the HOMA index. This comparative study reveals interplay between inductive and resonance contributions to the substituent effect.

10.1007/s11224-018-1113-5https://link.springer.com/article/10.1007/s11224-018-1113-5