6533b85bfe1ef96bd12bb474

RESEARCH PRODUCT

Identification of microRNAS differentially regulated by water deficit in relation to mycorrhizal treatment in wheat.

Rosolino IngraffiaDario GiambalvoFederico MartinelliGaetano AmatoVeronica Fileccia

subject

0301 basic medicineSmall RNABiologyPlant Roots03 medical and health sciences0302 clinical medicineSymbiosisTranscription (biology)Gene Expression Regulation PlantStress PhysiologicalMycorrhizaeBotanymicroRNAGeneticsProtein biosynthesisTranscriptional regulationGene Regulatory NetworksMolecular BiologyDurum wheatWater deficitTriticummiRNAPlant ProteinsAbiotic componentGene Expression ProfilingfungiGene Expression Regulation DevelopmentalGeneral MedicineCell redox homeostasisDroughtsPlant LeavesMicroRNAs030104 developmental biologyRootRNA Plant030220 oncology & carcinogenesisWheat

description

Arbuscular mycorrhizal fungi (AMF) are soil microrganisms that establish symbiosis with plants positively influencing their resistance to abiotic stresses. The aim of this work was to identify wheat miRNAs differentially regulated by water deficit conditions in presence or absence of AMF treatment. Small RNA libraries were constructed for both leaf and root tissues considering four conditions: control (irrigated) or water deficit in presence/absence of mycorrhizal (AMF) treatment. A total of 12 miRNAs were significantly regulated by water deficit in leaves: five in absence and seven in presence of AMF treatment. In roots, three miRNAs were water deficit-modulated in absence of mycorrhizal treatment while six were regulated in presence of it. The most represented miRNA family was miR167 that was regulated by water deficit in both leaf and root tissues. Interestingly, miR827-5p was differentially regulated in leaves in the absence of mycorrhizal treatment while it was water deficit-modulated in roots irrespective of AMF treatment. In roots, water deficit repressed miR827-5p, miR394, miR6187, miR167e-3p, and miR9666b-3p affecting transcription, RNA synthesis, protein synthesis, and protein modifications. In leaves, mycorrhizae modulated miR5384-3p and miR156e-3p affecting trafficking and cell redox homeostasis. DNA replication and transcription regulation should be targeted by the repression of miR1432-5p and miR166h-3p. This work provided interesting insights into the post-transcriptional mechanisms of wheat responses to water deficit in relation to mycorrhizal symbiosis.

10.1073/pnas.1703344114https://pubmed.ncbi.nlm.nih.gov/31327121