6533b85bfe1ef96bd12bb731

RESEARCH PRODUCT

Efficient magnetic-field amplification due to the Kelvin-Helmholtz instability in binary neutron star mergers

Yuichiro SekiguchiPablo Cerdá-duránMasaru ShibataKenta KiuchiKoutarou Kyutoku

subject

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Nuclear TheoryAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesBinary numberGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsKinetic energyInstabilityGeneral Relativity and Quantum CosmologyMagnetic fieldNuclear Theory (nucl-th)Numerical relativityNeutron starAstrophysics - Solar and Stellar AstrophysicsMagnetohydrodynamicsAstrophysics - High Energy Astrophysical PhenomenaSaturation (magnetic)Solar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics

description

We explore magnetic-field amplification due to the Kelvin-Helmholtz instability during binary neutron star mergers. By performing high-resolution general relativistic magnetohydrodynamics simulations with a resolution of $17.5$ m for $4$--$5$ ms after the onset of the merger on the Japanese supercomputer "K", we find that an initial magnetic field of moderate maximum strength $10^{13}$ G is amplified at least by a factor of $\approx 10^3$. We also explore the saturation of the magnetic-field energy and our result shows that it is likely to be $\gtrsim 4 \times 10^{50}$ erg, which is $\gtrsim 0.1\%$ of the bulk kinetic energy of the merging binary neutron stars.

https://doi.org/10.1103/physrevd.92.124034