6533b85bfe1ef96bd12bbec4
RESEARCH PRODUCT
Variational Henstock integrability of Banach space valued functions
Luisa Di PiazzaValeria MarraffaKazimierz Musiałsubject
Pettis integralDiscrete mathematicsPure mathematicsMathematics::Functional AnalysisMeasurable functionSeries (mathematics)General Mathematicslcsh:MathematicsBanach spacevariational Henstock integralDisjoint setsKurzweil-Henstock integralAbsolute convergenceLebesgue integrationlcsh:QA1-939symbols.namesakesymbolsPettis integralUnconditional convergenceMathematicsdescription
We study the integrability of Banach space valued strongly measurable functions defined on $[0,1]$. In the case of functions $f$ given by $\sum \nolimits _{n=1}^{\infty } x_n\chi _{E_n}$, where $x_n $ are points of a Banach space and the sets $E_n$ are Lebesgue measurable and pairwise disjoint subsets of $[0,1]$, there are well known characterizations for Bochner and Pettis integrability of $f$. The function $f$ is Bochner integrable if and only if the series $\sum \nolimits _{n=1}^{\infty }x_n|E_n|$ is absolutely convergent. Unconditional convergence of the series is equivalent to Pettis integrability of $f$. In this paper we give some conditions for variational Henstock integrability of a certain class of such functions.
year | journal | country | edition | language |
---|---|---|---|---|
2016-07-01 | Mathematica Bohemica |