6533b85bfe1ef96bd12bbec4

RESEARCH PRODUCT

Variational Henstock integrability of Banach space valued functions

Luisa Di PiazzaValeria MarraffaKazimierz Musiał

subject

Pettis integralDiscrete mathematicsPure mathematicsMathematics::Functional AnalysisMeasurable functionSeries (mathematics)General Mathematicslcsh:MathematicsBanach spacevariational Henstock integralDisjoint setsKurzweil-Henstock integralAbsolute convergenceLebesgue integrationlcsh:QA1-939symbols.namesakesymbolsPettis integralUnconditional convergenceMathematics

description

We study the integrability of Banach space valued strongly measurable functions defined on $[0,1]$. In the case of functions $f$ given by $\sum \nolimits _{n=1}^{\infty } x_n\chi _{E_n}$, where $x_n $ are points of a Banach space and the sets $E_n$ are Lebesgue measurable and pairwise disjoint subsets of $[0,1]$, there are well known characterizations for Bochner and Pettis integrability of $f$. The function $f$ is Bochner integrable if and only if the series $\sum \nolimits _{n=1}^{\infty }x_n|E_n|$ is absolutely convergent. Unconditional convergence of the series is equivalent to Pettis integrability of $f$. In this paper we give some conditions for variational Henstock integrability of a certain class of such functions.

10.21136/mb.2016.19http://mb.math.cas.cz/full/141/2/mb141_2_10.pdf