6533b85cfe1ef96bd12bbfe0

RESEARCH PRODUCT

On 1-Laplacian Elliptic Equations Modeling Magnetic Resonance Image Rician Denoising

Emanuele SchiaviSergio Segura De LeónAdrian Martin

subject

Statistics and ProbabilityFOS: Computer and information sciencesComputer scienceNoise reductionComputer Vision and Pattern Recognition (cs.CV)Bayesian probabilityComputer Science - Computer Vision and Pattern Recognition02 engineering and technology01 natural sciencesTikhonov regularizationsymbols.namesakeMathematics - Analysis of PDEsOperator (computer programming)Rician fading0202 electrical engineering electronic engineering information engineeringFOS: MathematicsApplied mathematicsMathematics - Numerical Analysis0101 mathematicsApplied Mathematics010102 general mathematicsNumerical Analysis (math.NA)Condensed Matter PhysicsNonlinear systemModeling and Simulationsymbols020201 artificial intelligence & image processingGeometry and TopologyComputer Vision and Pattern RecognitionLaplace operatorBessel functionAnalysis of PDEs (math.AP)

description

Modeling magnitude Magnetic Resonance Images (MRI) rician denoising in a Bayesian or generalized Tikhonov framework using Total Variation (TV) leads naturally to the consideration of nonlinear elliptic equations. These involve the so called $1$-Laplacian operator and special care is needed to properly formulate the problem. The rician statistics of the data are introduced through a singular equation with a reaction term defined in terms of modified first order Bessel functions. An existence theory is provided here together with other qualitative properties of the solutions. Remarkably, each positive global minimum of the associated functional is one of such solutions. Moreover, we directly solve this non--smooth non--convex minimization problem using a convergent Proximal Point Algorithm. Numerical results based on synthetic and real MRI demonstrate a better performance of the proposed method when compared to previous TV based models for rician denoising which regularize or convexify the problem. Finally, an application on real Diffusion Tensor Images, a strongly affected by rician noise MRI modality, is presented and discussed.

https://dx.doi.org/10.48550/arxiv.1510.02923