6533b85cfe1ef96bd12bc02e

RESEARCH PRODUCT

Critical behavior of a colloid-polymer mixture confined between walls

Kurt BinderJürgen HorbachRichard L. C. Vink

subject

BinodalCondensed matter physicsCritical phenomenaFOS: Physical sciencesCondensed Matter - Soft Condensed MatterAtomic packing factorUniversality (dynamical systems)Condensed Matter::Soft Condensed MatterCritical point (thermodynamics)Soft Condensed Matter (cond-mat.soft)Ising modelStatistical physicsCritical exponentScalingMathematics

description

We investigate the influence of confinement on phase separation in colloid-polymer mixtures. To describe the particle interactions, the colloid-polymer model of Asakura and Oosawa [J. Chem. Phys. 22, 1255 (1954)] is used. Grand canonical Monte Carlo simulations are then applied to this model confined between two parallel hard walls, separated by a distance D=5 colloid diameters. We focus on the critical regime of the phase separation and look for signs of crossover from three-dimensional (3D) Ising to two-dimensional (2D) Ising universality. To extract the critical behavior, finite size scaling techniques are used, including the recently proposed algorithm of Kim et al. [Phys. Rev. Lett. 91, 065701 (2003)]. Our results point to effective critical exponents that differ profoundly from 3D Ising values, and that are already very close to 2D Ising values. In particular, we observe that the critical exponent beta of the order parameter in the confined system is smaller than in 3D bulk, yielding a flatter binodal. Our results also show an increase in the critical colloid packing fraction in the confined system with respect to the bulk. The latter seems consistent with theoretical expectations, although subtleties due to singularities in the critical behavior of the coexistence diameter cannot be ruled out.

https://doi.org/10.1103/physreve.73.056118