6533b85cfe1ef96bd12bc07a

RESEARCH PRODUCT

Charge transport through spin-polarized tunnel junction between two spin-split superconductors

Mikel RoucoTero T. HeikkiläSubrata ChakrabortySubrata ChakrabortyVitaly N. GolovachVitaly N. GolovachVitaly N. GolovachElia StrambiniF. Sebastian BergeretF. Sebastian BergeretFaluke AikebaierFrancesco GiazottoJagadeesh S. Moodera

subject

Josephson effect---suprajohtavuusFOS: Physical sciences02 engineering and technology01 natural sciencessuprajohteetSuperconductivity (cond-mat.supr-con)MagnetizationTunnel junctionCondensed Matter::Superconductivity0103 physical sciences010306 general physicsQuantum tunnellingSuperconductivityPhysicsCondensed matter physicssuperconductivityCondensed Matter - SuperconductivityJosephson effectOrder (ring theory)021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectMagnetic anisotropyGeometric phaseproximity effect0210 nano-technology

description

We investigate transport properties of junctions between two spin-split superconductors linked by a spin-polarized tunneling barrier. The spin-splitting fields in the superconductors (S) are induced by adjacent ferromagnetic insulating (FI) layers with arbitrary magnetization. The aim of this study is twofold: On the one hand, we present a theoretical framework based on the quasiclassical Green's functions to calculate the Josephson and quasiparticle current through the junctions in terms of the different parameters characterizing it. Our theory predicts qualitative new results for the tunneling differential conductance, $dI/dV$, when the spin-splitting fields of the two superconductors are non-collinear. We also discuss how junctions based on FI/S can be used to realize anomalous Josephson junctions with a constant geometric phase shift in the current-phase relation. As a result, they may exhibit spontaneous triplet supercurrents in the absence of a phase difference between the S electrodes. On the other hand, we show results of planar tunneling spectroscopy of a EuS/Al/Al$_2$O$_3$/EuS/Al junction and use our theoretical model to reproduce the obtained $dI/dV$ curves. Comparison between theory and experiment reveals information about the intrinsic parameters of the junction, such as the size of the superconducting order parameter, spin-splitting fields and spin relaxation, and also about properties of the two EuS films, as their morphology, domain structure, and magnetic anisotropy.

10.1103/physrevb.100.184501http://hdl.handle.net/10261/203204