0000000000369367

AUTHOR

Subrata Chakraborty

showing 4 related works from this author

Thermoelectric radiation detector based on a superconductor-ferromagnet junction : Calorimetric regime

2018

We study the use of a thermoelectric junction as a thermal radiation detector in the calorimetric regime, where single radiation bursts can be separated in time domain. We focus especially on the case of a large thermoelectric figure of merit ZT affecting significantly, for example, the relevant thermal time scales. This work is motivated by the use of hybrid superconductor/ferromagnet systems in creating an unprecedentedly high low-temperature ZT even exceeding unity. Besides constructing a very general noise model which takes into account cross correlations between charge and heat noise, we show how the detector signal can be efficiently multiplexed by the use of resonant LC circuits givi…

superconducting filmsthermodynamic measurements and instrumentationradiation detectorssignaalinkäsittelyilmaisimetinductorsferromagnetic materialsquasiparticlelämpösäteilytelecommunications engineeringfononitsuprajohteet
researchProduct

Thermoelectric radiation detector based on a superconductor-ferromagnet junction : Calorimetric regime

2018

We study the use of a thermoelectric junction as a thermal radiation detector in the calorimetric regime, where single radiation bursts can be separated in time domain. We focus especially on the case of a large thermoelectric figure of merit $ZT$ affecting significantly for example the relevant thermal time scales. This work is motivated by the use of hybrid superconductor/ferromagnet systems in creating an unprecedentedly high low-temperature $ZT$ even exceeding unity. Besides constructing a very general noise model which takes into account cross correlations between charge and heat noise, we show how the detector signal can be efficiently multiplexed by the use of resonant LC circuits gi…

PhotonTerahertz radiationinductorsFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technologysuperconductors7. Clean energy01 natural sciencesNoise (electronics)Particle detectorsuprajohteetradiation detectorsMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesThermoelectric effectTime domain010306 general physicssignal processingPhysicssuperconducting filmsCondensed Matter - Mesoscale and Nanoscale Physicsta114ta213Detector021001 nanoscience & nanotechnology3. Good healthComputational physicsThermal radiationilmaisimetlämpösäteily0210 nano-technologytelecommunications engineeringJournal of Applied Physics
researchProduct

Charge transport through spin-polarized tunnel junction between two spin-split superconductors

2019

We investigate transport properties of junctions between two spin-split superconductors linked by a spin-polarized tunneling barrier. The spin-splitting fields in the superconductors (S) are induced by adjacent ferromagnetic insulating (FI) layers with arbitrary magnetization. The aim of this study is twofold: On the one hand, we present a theoretical framework based on the quasiclassical Green's functions to calculate the Josephson and quasiparticle current through the junctions in terms of the different parameters characterizing it. Our theory predicts qualitative new results for the tunneling differential conductance, $dI/dV$, when the spin-splitting fields of the two superconductors are…

Josephson effect---suprajohtavuusFOS: Physical sciences02 engineering and technology01 natural sciencessuprajohteetSuperconductivity (cond-mat.supr-con)MagnetizationTunnel junctionCondensed Matter::Superconductivity0103 physical sciences010306 general physicsQuantum tunnellingSuperconductivityPhysicsCondensed matter physicssuperconductivityCondensed Matter - SuperconductivityJosephson effectOrder (ring theory)021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectMagnetic anisotropyGeometric phaseproximity effect0210 nano-technology
researchProduct

Thermalization of hot electrons via interfacial electron-magnon interaction

2019

Recent work on layered structures of superconductors (S) or normal metals (N) in contact with ferromagnetic insulators (FI) has shown how the properties of the previous can be strongly affected by the magnetic proximity effect due to the static FI magnetization. Here we show that such structures can also exhibit a new electron thermalization mechanism due to the coupling of electrons with the dynamic magnetization, i.e., magnons in FI. We here study the heat flow between the two systems and find that in thin films the heat conductance due to the interfacial electron-magnon collisions can dominate over the well-known electron-phonon coupling below a certain characteristic temperature that ca…

magneettiset ominaisuudetMaterials scienceelectron relaxationBand gapFOS: Physical sciences02 engineering and technologyElectronsuperconductors7. Clean energy01 natural sciencesmagnonssuprajohteetMagnetization0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Proximity effect (superconductivity)010306 general physicsComputer Science::DatabasesSuperconductivityCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsMagnonConductance021001 nanoscience & nanotechnologyFerromagnetismtransport phenomenalämmön johtuminenCondensed Matter::Strongly Correlated Electrons0210 nano-technology
researchProduct