6533b85cfe1ef96bd12bc0e8
RESEARCH PRODUCT
Crosstalk between receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCR) in the brain: Focus on heteroreceptor complexes and related functional neurotrophic effects
Natale BelluardoValentina Di LibertoGiuseppa Mudòsubject
0301 basic medicineG proteinRTKHeteroreceptorSettore BIO/09 - FisiologiaReceptor tyrosine kinaseReceptors G-Protein-Coupled03 medical and health sciencesCellular and Molecular NeuroscienceTransactivation0302 clinical medicineGPCRReceptor Fibroblast Growth Factor Type 1Receptor Fibroblast Growth Factor Type 2ReceptorG protein-coupled receptorPharmacologyTransactivationbiologyChemistryReceptor Protein-Tyrosine KinasesBrainReceptor Cross-TalkCrosstalk (biology)030104 developmental biologyHeteroreceptor complexebiology.proteinSignal transductionNeuroscience030217 neurology & neurosurgerySignal Transductiondescription
Neuronal events are regulated by the integration of several complex signaling networks in which G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) are considered key players of an intense bidirectional cross-communication in the cell, generating signaling mechanisms that, at the same time, connect and diversify the traditional signal transduction pathways activated by the single receptor. For this receptor-receptor crosstalk, the two classes of receptors form heteroreceptor complexes resulting in RTKs transactivation and in growth-promoting signals. In this review, we describe heteroreceptor complexes between GPCR and RTKs in the central nervous system (CNS) and their functional effects in controlling a variety of neuronal effects, ranging from development, proliferation, differentiation and migration, to survival, repair, synaptic transmission and plasticity. In this interaction, RTKs can also recruit components of the G protein signaling cascade, creating a bidirectional intricate interplay that provides complex control over multiple cellular events. These heteroreceptor complexes, by the integration of different signals, have recently attracted a growing interest as novel molecular target for depressive disorders. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
year | journal | country | edition | language |
---|---|---|---|---|
2019-07-01 |