6533b85cfe1ef96bd12bc806

RESEARCH PRODUCT

On complete metric spaces containing the Sierpinski curve

Janusz R. Prajs

subject

Plane curveApplied MathematicsGeneral MathematicsMathematical analysisComplete metric spaceCombinatoricssymbols.namesakeMetric spaceMathematics Subject ClassificationHomogeneoussymbolsEmbeddingSierpiński curveConnectivityMathematics

description

It is proved that a complete metric space topologically contains the Sierpiński universal plane curve if and only if it has a subset with so-called bypass property, i.e. it has a subset K K containing an arc such that for each a ∈ K a\in K and for each open arc A ⊂ K A\subset K with a ∈ A a\in A , there exists an arbitrary small arc in K ∖ { a } K\setminus \{a\} joining the two components of A ∖ { a } A\setminus \{a\} .

https://doi.org/10.1090/s0002-9939-98-04509-2