6533b85cfe1ef96bd12bc8bd
RESEARCH PRODUCT
Functional equations of the dilogarithm in motivic cohomology
Oliver Petrassubject
Pure mathematicsAlgebra and Number TheoryMathematics - Number Theory11G55CodimensionAlgebraic number field11F42Chow ringMotivic cohomologyAlgebraDeligne cohomologyMathematics - Algebraic GeometryMathematics::Algebraic GeometryMathematics::K-Theory and HomologyTorsion (algebra)FOS: MathematicsEquivariant cohomology11R70Number Theory (math.NT)11S7011G55; 11R70; 11S70; 11F42Algebraic Geometry (math.AG)Mathematicsdescription
We prove relations between fractional linear cycles in Bloch's integral cubical higher Chow complex in codimension two of number fields, which correspond to functional equations of the dilogarithm. These relations suffice, as we shall demonstrate with a few examples, to write down enough relations in Bloch's integral higher Chow group CH^2(F,3) for certain number fields F to detect torsion cycles. Using the regulator map to Deligne cohomology, one can check the non-triviality of the torsion cycles thus obtained. Using this combination of methods, we obtain explicit higher Chow cycles generating the integral motivic cohomology groups of some number fields.
| year | journal | country | edition | language |
|---|---|---|---|---|
| 2009-10-01 |