Search results for "Codimension"

showing 10 items of 112 documents

Codimension growth of central polynomials of Lie algebras

2019

Abstract Let L be a finite-dimensional simple Lie algebra over an algebraically closed field of characteristic zero and let I be the T-ideal of polynomial identities of the adjoint representation of L. We prove that the number of multilinear central polynomials in n variables, linearly independent modulo I, grows exponentially like ( dim ⁡ L ) n {(\dim L)^{n}} .

010101 applied mathematicsPure mathematicsExponential growthApplied MathematicsGeneral MathematicsComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION010102 general mathematicsLie algebraCodimension0101 mathematics01 natural sciencesMathematicsForum Mathematicum
researchProduct

Varieties of algebras with pseudoinvolution and polynomial growth

2017

Let A be an associative algebra with pseudoinvolution (Formula presented.) over an algebraically closed field of characteristic zero and let (Formula presented.) be its sequence of (Formula presented.) -codimensions. We shall prove that such a sequence is polynomially bounded if and only if the variety generated by A does not contain five explicitly described algebras with pseudoinvolution. As a consequence, we shall classify the varieties of algebras with pseudoinvolution of almost polynomial growth, i.e. varieties of exponential growth such that any proper subvariety has polynomial growth and, along the way, we shall give also the classification of their subvarieties. Finally, we shall de…

16R50; 16W50; growth; Polynomial identity; Primary: 16R10; pseudoinvolution; Secondary: 16W10Linear function (calculus)PolynomialPure mathematicspseudoinvolutionAlgebra and Number TheorySubvariety16R50growth010102 general mathematicsPolynomial identity pseudo involution codimension growthZero (complex analysis)010103 numerical & computational mathematicsPolynomial identity01 natural sciencesPrimary: 16R10Settore MAT/02 - AlgebraBounded functionAssociative algebra0101 mathematicsAlgebraically closed fieldVariety (universal algebra)16W50Secondary: 16W10MathematicsLinear and Multilinear Algebra
researchProduct

Abelian integrals and limit cycles

2006

Abstract The paper deals with generic perturbations from a Hamiltonian planar vector field and more precisely with the number and bifurcation pattern of the limit cycles. In this paper we show that near a 2-saddle cycle, the number of limit cycles produced in unfoldings with one unbroken connection, can exceed the number of zeros of the related Abelian integral, even if the latter represents a stable elementary catastrophe. We however also show that in general, finite codimension of the Abelian integral leads to a finite upper bound on the local cyclicity. In the treatment, we introduce the notion of simple asymptotic scale deformation.

Abelian integralPure mathematicsApplied MathematicsMathematical analysisAbelian integralTwo-saddle cyclePlanar vector fieldsAsymptotic scale deformationCodimensionLimit cycleUpper and lower boundsPlanar vector fieldsymbols.namesakeLimit cyclesymbolsHamiltonian perturbationAbelian groupHamiltonian (quantum mechanics)BifurcationAnalysisMathematicsJournal of Differential Equations
researchProduct

Group graded algebras and almost polynomial growth

2011

Let F be a field of characteristic 0, G a finite abelian group and A a G-graded algebra. We prove that A generates a variety of G-graded algebras of almost polynomial growth if and only if A has the same graded identities as one of the following algebras: (1) FCp, the group algebra of a cyclic group of order p, where p is a prime number and p||G|; (2) UT2G(F), the algebra of 2×2 upper triangular matrices over F endowed with an elementary G-grading; (3) E, the infinite dimensional Grassmann algebra with trivial G-grading; (4) in case 2||G|, EZ2, the Grassmann algebra with canonical Z2-grading.

Algebra and Number TheoryGraded algebra Polynomial identity Growth CodimensionsMathematics::Commutative AlgebraSubalgebraUniversal enveloping algebraGrowthPolynomial identityGraded algebraCodimensionsGraded Lie algebraFiltered algebraCombinatoricsSettore MAT/02 - AlgebraDifferential graded algebraDivision algebraAlgebra representationCellular algebraMathematics
researchProduct

Varieties with at most cubic growth

2019

Abstract Let V be a variety of non necessarily associative algebras over a field of characteristic zero. The growth of V is determined by the asymptotic behavior of the sequence of codimensions c n ( V ) , n = 1 , 2 , … , and here we study varieties of polynomial growth. We classify all possible growth of varieties V of algebras satisfying the identity x ( y z ) ≡ 0 such that c n ( V ) C n α , with 1 ≤ α 3 , for some constant C. We prove that if 1 ≤ α 2 then c n ( V ) ≤ C 1 n , and if 2 ≤ α 3 , then c n ( V ) ≤ C 2 n 2 , for some constants C 1 , C 2 .

Algebra and Number TheoryVarietie010102 general mathematicsZero (complex analysis)Field (mathematics)01 natural sciencesCombinatoricsIdentity (mathematics)Settore MAT/02 - Algebra0103 physical sciences010307 mathematical physics0101 mathematicsVariety (universal algebra)Codimension growthMathematics
researchProduct

Codimension growth of special simple Jordan algebras

2009

Let $R$ be a special simple Jordan algebra over a field of characteristic zero. We exhibit a noncommutative Jordan polynomial $f$ multialternating on disjoint sets of variables which is not a polynomial identity of $R$. We then study the growth of the polynomial identities of the Jordan algebra $R$ through an analysis of its sequence of Jordan codimensions. By exploiting the basic properties of the polynomials $f$, we are able to compute the exponential rate of growth of the sequence of Jordan codimensions of $R$ and prove that it equals the dimension of the Jordan algebra over its center. We also show that for any finite dimensional special Jordan algebra, such exponential rate of growth c…

AlgebraPure mathematicsJordan algebraSimple (abstract algebra)Applied MathematicsGeneral MathematicsCodimensionMathematicsJordan algebra simple
researchProduct

Almost Planar Homoclinic Loops in R3

1996

AbstractIn this paper we study homoclinic loops of vector fields in 3-dimensional space when the two principal eigenvalues are real of opposite sign, which we call almost planar. We are interested to have a theory for higher codimension bifurcations. Almost planar homoclinic loop bifurcations generically occur in two versions “non-twisted” and “twisted” loops. We consider high codimension homoclinic loop bifurcations under generic conditions. The generic condition forces the existence of a 2-dimensional topological invariant ring (non necessarily unique), which is a topological cylinder in the “non-twisted” case and a topological Möbius band in the “twisted” case. If the third eigenvalue is…

Applied Mathematics010102 general mathematicsMathematical analysisCodimensionFixed point01 natural sciences010101 applied mathematicsNonlinear Sciences::Chaotic Dynamicssymbols.namesakesymbolsHomoclinic bifurcationHomoclinic orbitMöbius strip0101 mathematicsInvariant (mathematics)Asymptotic expansionEigenvalues and eigenvectorsAnalysisMathematicsJournal of Differential Equations
researchProduct

Correspondence between some metabelian varieties and left nilpotent varieties

2021

Abstract In the class of left nilpotent algebras of index two it was proved that there are no varieties of fractional polynomial growth ≈ n α with 1 α 2 and 2 α 3 instead it was established the existence of a variety of fractional polynomial growth with α = 7 2 . In this paper we investigate similar problems for varieties of commutative or anticommutative metabelian algebras. We construct a correspondence between left nilpotent algebras of index two and commutative metabelian algebras or anticommutative metabelian algebras and we prove that the codimensions sequences of the corresponding algebras coincide up to a constant. This allows us to transfer the above results concerning varieties of…

Class (set theory)Pure mathematicsAlgebra and Number TheoryAnticommutativityFractional polynomialVarietiesMathematics::Rings and Algebras010102 general mathematicsGrowth01 natural sciencesSettore MAT/02 - AlgebraMathematics::Group TheoryTransfer (group theory)NilpotentCodimension0103 physical sciences010307 mathematical physics0101 mathematicsVariety (universal algebra)Constant (mathematics)Commutative propertyMathematicsJournal of Pure and Applied Algebra
researchProduct

Semmes surfaces and intrinsic Lipschitz graphs in the Heisenberg group

2018

A Semmes surface in the Heisenberg group is a closed set $S$ that is upper Ahlfors-regular with codimension one and satisfies the following condition, referred to as Condition B. Every ball $B(x,r)$ with $x \in S$ and $0 < r < \operatorname{diam} S$ contains two balls with radii comparable to $r$ which are contained in different connected components of the complement of $S$. Analogous sets in Euclidean spaces were introduced by Semmes in the late $80$'s. We prove that Semmes surfaces in the Heisenberg group are lower Ahlfors-regular with codimension one and have big pieces of intrinsic Lipschitz graphs. In particular, our result applies to the boundary of chord-arc domains and of redu…

Closed setApplied MathematicsGeneral Mathematics010102 general mathematicsBoundary (topology)Metric Geometry (math.MG)CodimensionLipschitz continuitySurface (topology)01 natural sciencesCombinatorics28A75 (Primary) 28A78 (Secondary)Mathematics - Metric GeometryMathematics - Classical Analysis and ODEsClassical Analysis and ODEs (math.CA)FOS: MathematicsHeisenberg groupMathematics::Metric Geometrymittateoria[MATH]Mathematics [math]0101 mathematicsIsoperimetric inequalityComputingMilieux_MISCELLANEOUSMathematicsComplement (set theory)Transactions of the American Mathematical Society
researchProduct

Some varieties of algebras of polynomial growth

2008

We determine a complete list of finite dimensional algebras generating the subvarieties of var(G) and var(UT_2).

Codimensions T-ideal
researchProduct