6533b85cfe1ef96bd12bc929

RESEARCH PRODUCT

Design and simulation of QCA-based 3-bit binary to gray and vice versa code converter in reversible and non-reversible mode

Behrouz SafaiezadehEbrahim MahdipourMajid HaghparastSamira SayedsalehiMehdi Hosseinzadeh

subject

logiikkaohjelmointibinary to graykvanttitietokoneetHardware_INTEGRATEDCIRCUITSsoluautomaatitQuantum computingreversible logickvanttilaskentaElectrical and Electronic Engineeringquantum-dot cellular automatagray to binaryAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materials

description

The current Very Large-Scale Integration (VLSI) technology has reached its peak due to the fundamental physical limits of Complementary Metal-Oxide-Semiconductor (CMOS). Quantum-dot Cellular Automata (QCA) is considered a proper alternative to CMOS technology in digital circuit design. QCA has features like low power, small area, and high speed in nanoscale digital circuit design. A code converter is a circuit that converts a determined code to another one. Code converters such as Binary to Gray, Gray to Binary, and Binary to BCD converters have a crucial role in fast signal processing in digital systems. Also, code converters are used as a base unit for data transmission into the Arithmetic Logic Unit (ALU) to perform processes. A Binary-to-Gray converter converts the input data to a Gray number. In this paper, we propose a 3-bit Binary to Gray and vice versa code converter in QCA. Previous proposed designs could only convert Binary to Gray code or vice versa, but the proposed design convert both B2G and G2B codes into a circuit. We design our circuit in both reversible and non-reversible modes. The simulation of the proposed design is done using the QCADesigner 2.0.3 tools. The simulation results show that the proposed design is superior to the existing designs in terms of evaluation parameters such as cell count, area, latency, and quantum cost. peerReviewed

https://doi.org/10.1016/j.ijleo.2021.168464