6533b85cfe1ef96bd12bc9b2

RESEARCH PRODUCT

Depth-Adapted CNN for RGB-D cameras

Christophe StolzZongwei WuGuillaume AllibertCédric Demonceaux

subject

FOS: Computer and information sciencesOffset (computer science)Computer scienceComputer Vision and Pattern Recognition (cs.CV)Coordinate systemComputer Science::Neural and Evolutionary ComputationComputer Science - Computer Vision and Pattern RecognitionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION02 engineering and technologyConvolutional neural network030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicine0202 electrical engineering electronic engineering information engineering[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO]Computer visionInvariant (mathematics)business.industry[INFO.INFO-RB] Computer Science [cs]/Robotics [cs.RO]020207 software engineeringWeightingSpatial coherenceComputer Science::Computer Vision and Pattern RecognitionRGB color modelArtificial intelligencebusinessLinear filter

description

Conventional 2D Convolutional Neural Networks (CNN) extract features from an input image by applying linear filters. These filters compute the spatial coherence by weighting the photometric information on a fixed neighborhood without taking into account the geometric information. We tackle the problem of improving the classical RGB CNN methods by using the depth information provided by the RGB-D cameras. State-of-the-art approaches use depth as an additional channel or image (HHA) or pass from 2D CNN to 3D CNN. This paper proposes a novel and generic procedure to articulate both photometric and geometric information in CNN architecture. The depth data is represented as a 2D offset to adapt spatial sampling locations. The new model presented is invariant to scale and rotation around the X and the Y axis of the camera coordinate system. Moreover, when depth data is constant, our model is equivalent to a regular CNN. Experiments of benchmarks validate the effectiveness of our model.

https://hal.archives-ouvertes.fr/hal-02946902/file/ACCV2020_ZACN__Camera_ready_.pdf