6533b85cfe1ef96bd12bca82

RESEARCH PRODUCT

Generalized person-by-person optimization in team problems with binary decisions

Raffaele PesentiDario Bauso

subject

OptimizationModularity (networks)Mathematical optimizationBoolean functions; OptimizationBinary decision diagramDecision theoryContext (language use)Boolean algebrasymbols.namesakeTeam theorysymbolsVerifiable secret sharingBoolean functionsBoolean functionTime complexityMathematics

description

In this paper, we extend the notion of person by person optimization to binary decision spaces. The novelty of our approach is the adaptation to a dynamic team context of notions borrowed from the pseudo-boolean optimization field as completely local-global or unimodal functions and sub- modularity. We also generalize the concept of pbp optimization to the case where the decision makers (DMs) make decisions sequentially in groups of m, we call it mbm optimization. The main contribution are certain sufficient conditions, verifiable in polynomial time, under which a pbp or an mbm optimization algorithm leads to the team-optimum. We also show that there exists a subclass of sub-modular team problems, recognizable in polynomial time, for which the convergence is guaranteed if the pbp algorithm is opportunely initialized.

10.1109/acc.2008.4586577http://hdl.handle.net/10278/26084