6533b85cfe1ef96bd12bcfb9

RESEARCH PRODUCT

Study of leurocyte telomere lenght and transcription in patients in the acute phase of myocardial infarction

Sébastien Saliques

subject

Bio-marqueursLongueur des télomères leucocytairesInflammationPathologies athéromateuses[SDV.MHEP] Life Sciences [q-bio]/Human health and pathologyC-FosTabacStress oxydatifNo english keywordsInfarctus du myocardeOGG1Statines

description

Atherosclerosis with cardiovascular complications remains today one of the leading causes of death in developed countries. In this context, development of new biomarkers of atherosclerosis has an important place. Objectives of these biomarkers are: • to identify populations most at risk of developing cardiovascular complications, • to stratify patient groups to optimize their clinical management and therapeutic, • to reveal new therapeutic targets in the treatment of the disease. In this context, we identified three biomarkers of interest, leukocyte telomere length (LTL) and level of expression of leukocyte genes c-Fos (involved in inflammatory processes and oxidative) and OGG1 (necessary repair of oxidative DNA damage). We therefore first part of this study wanted to test the hypothesis that LTL may be maintained by regular use of statin therapy which has already demonstrated its benefits in terms of primary and secondary prevention of cardiovascular disease. In addition, we examined the possible relationship between gene expression levels of c-Fos and OGG1 and LTL. We placed in the context of patients at high cardiovascular risk posed by patients in acute phase of myocardial infarction (MI). This work has shown that regular use of statins could preserve leukocyte telomere length and particularly among the younger subjects (under 64), suggesting a new effect "pleiotropic" statin. This work has also identified the genes c-Fos and OGG1 as potential actors for the maintenance of telomere integrity. The second part of our work focused on further study of the level of transcription of c-Fos in connection with one of the main risk factors for atherosclerosis posed by smoking status in patients with coronary artery disease. This work has to show for the first time a relationship between the expression level of c-Fos and smoking status of subjects, suggesting that one possible way of tobacco toxicity may involve the signaling pathways involving c-Fos. Thus, this thesis has highlighted three biomarkers of interest in the area of atherosclerotic disease: 1. Leukocyte telomere length may be one way of beneficial action of statins in early prevention of cardiovascular disease, 2. The level of OGG1 gene expression as a potential actor for maintained the integrity of telomeres, 3. The level of expression of the gene c-Fos as a marker of cumulative smoking exposure and potential actor of deleterious effects of tobacco. Remains to clarify the cellular and molecular mechanisms brought into play and thus develop appropriate therapeutic strategies to optimize the management of patients with atherosclerotic disease.

https://theses.hal.science/tel-00696090