6533b85cfe1ef96bd12bd1fc
RESEARCH PRODUCT
Biometric Fish Classification of Temperate Species Using Convolutional Neural Network with Squeeze-and-Excitation
Kristian Muri KnausgårdArne WiklundMorten GoodwinChristian M. D. TrinhTonje Knutsen SørdalenLei JiaoAlf Ring KleivenErlend Olsviksubject
0106 biological sciencesBiometricsComputer sciencebusiness.industry010604 marine biology & hydrobiologyPattern recognitionSharpening010603 evolutionary biology01 natural sciencesConvolutional neural networkBackground noiseA priori and a posterioriArtificial intelligenceUnderwaterbusinessTransfer of learningClassifier (UML)description
Our understanding and ability to effectively monitor and manage coastal ecosystems are severely limited by observation methods. Automatic recognition of species in natural environment is a promising tool which would revolutionize video and image analysis for a wide range of applications in marine ecology. However, classifying fish from images captured by underwater cameras is in general very challenging due to noise and illumination variations in water. Previous classification methods in the literature relies on filtering the images to separate the fish from the background or sharpening the images by removing background noise. This pre-filtering process may negatively impact the classification accuracy. In this work, we propose a Convolutional Neural Network (CNN) using the Squeeze-and-Excitation (SE) architecture for classifying images of fish without pre-filtering. Different from conventional schemes, this scheme is divided into two steps. The first step is to train the fish classifier via a public data set, i.e., Fish4Knowledge, without using image augmentation, named as pre-training. The second step is to train the classifier based on a new data set consisting of species that we are interested in for classification, named as post-training. The weights obtained from pre-training are applied to post-training as a priori. This is also known as transfer learning. Our solution achieves the state-of-the-art accuracy of 99.27% accuracy on the pre-training. The accuracy on the post-training is 83.68%. Experiments on the post-training with image augmentation yields an accuracy of 87.74%, indicating that the solution is viable with a larger data set.
year | journal | country | edition | language |
---|---|---|---|---|
2019-01-01 |