6533b85cfe1ef96bd12bd435

RESEARCH PRODUCT

Effects of Indistinguishability in a System of Three Identical Qubits

Rosario Lo FrancoGiuseppe CompagnoAlessia Castellini

subject

Partial traceFOS: Physical scienceslcsh:Apartial traceQuantum entanglementthree qubits01 natural sciencesSettore FIS/03 - Fisica Della Materia03 medical and health sciencesDelocalized electronQuantum stateQuantum mechanics0103 physical sciences010306 general physicsQuantum030304 developmental biologyBosonPhysicsQuantum Physics0303 health sciencesthree qubitidentical particleQuantum Physicsidentical particlesQubitlcsh:General WorksQuantum Physics (quant-ph)entanglementIdentical particles

description

Quantum correlations of identical particles are important for quantum-enhanced technologies. The recently introduced non-standard approach to treat identical particles [G. Compagno et al., Phil. Trans. R. Soc. A 376, 20170317 (2018)] is here exploited to show the effect of particle indistinguishability on the characterization of entanglement of three identical qubits. We show that, by spatially localized measurements in separated regions, three independently-prepared separated qubits in a pure elementary state behave as distinguishable ones, as expected. On the other hand, delocalized measurements make it emerge a measurement-induced entanglement. We then find that three independently-prepared boson qubits under complete spatial overlap exhibit genuine three-partite entanglement. These results evidence the effect of spatial overlap on identical particle entanglement and show that the latter depends on both the quantum state and the type of measurement.

https://doi.org/10.3390/proceedings2019012023