6533b85cfe1ef96bd12bd52d

RESEARCH PRODUCT

Abstract ladder operators and their applications

Fabio Bagarello

subject

Statistics and ProbabilityQuantum PhysicsPure mathematicsGeneralized Heisenberg algebraFOS: Physical sciencesGeneral Physics and AstronomyStatistical and Nonlinear PhysicsMathematical Physics (math-ph)ladder operatorsLadder operatorModeling and Simulationpseudo-bosonsAlgebra over a fieldQuantum Physics (quant-ph)Settore MAT/07 - Fisica MatematicaMathematical PhysicsMathematics

description

We consider a rather general version of ladder operator $Z$ used by some authors in few recent papers, $[H_0,Z]=\lambda Z$ for some $\lambda\in\mathbb{R}$, $H_0=H_0^\dagger$, and we show that several interesting results can be deduced from this formula. Then we extend it in two ways: first we replace the original equality with formula $[H_0,Z]=\lambda Z[Z^\dagger, Z]$, and secondly we consider $[H,Z]=\lambda Z$ for some $\lambda\in\mathbb{C}$, $H\neq H^\dagger$. In both cases many applications are discussed. In particular we consider factorizable Hamiltonians and Hamiltonians written in terms of operators satisfying the generalized Heisenberg algebra or the $\D$ pseudo-bosonic commutation relations.

https://doi.org/10.1088/1751-8121/ac28cf