6533b85cfe1ef96bd12bd52d
RESEARCH PRODUCT
Abstract ladder operators and their applications
Fabio Bagarellosubject
Statistics and ProbabilityQuantum PhysicsPure mathematicsGeneralized Heisenberg algebraFOS: Physical sciencesGeneral Physics and AstronomyStatistical and Nonlinear PhysicsMathematical Physics (math-ph)ladder operatorsLadder operatorModeling and Simulationpseudo-bosonsAlgebra over a fieldQuantum Physics (quant-ph)Settore MAT/07 - Fisica MatematicaMathematical PhysicsMathematicsdescription
We consider a rather general version of ladder operator $Z$ used by some authors in few recent papers, $[H_0,Z]=\lambda Z$ for some $\lambda\in\mathbb{R}$, $H_0=H_0^\dagger$, and we show that several interesting results can be deduced from this formula. Then we extend it in two ways: first we replace the original equality with formula $[H_0,Z]=\lambda Z[Z^\dagger, Z]$, and secondly we consider $[H,Z]=\lambda Z$ for some $\lambda\in\mathbb{C}$, $H\neq H^\dagger$. In both cases many applications are discussed. In particular we consider factorizable Hamiltonians and Hamiltonians written in terms of operators satisfying the generalized Heisenberg algebra or the $\D$ pseudo-bosonic commutation relations.
year | journal | country | edition | language |
---|---|---|---|---|
2021-01-01 | Journal of Physics A: Mathematical and Theoretical |