6533b85cfe1ef96bd12bd614
RESEARCH PRODUCT
Cellular Plasticity in the Adult Murine Piriform Cortex: Continuous Maturation of Dormant Precursors Into Excitatory Neurons
Maria BellesLudwig AignerJuan NacherDominik DannehlDominik DannehlRichard KönigChristina KreutzerPeter RotheneichnerMaren EngelhardtBruno BenedettiPia ZaunmairSebastien Couillard-despressubject
Doublecortin Domain Proteins0301 basic medicineDoublecortin ProteinCognitive NeuroscienceCell PlasticityGreen Fluorescent ProteinsSubventricular zoneMice TransgenicNerve Tissue ProteinsNeural Cell Adhesion Molecule L1Piriform CortexBiologyMice03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineCortex (anatomy)Piriform cortexNeuroplasticitymedicineAnimalsNeuronsGlutamate DecarboxylaseStem CellsDentate gyrusNeuropeptidesNeurogenesisGene Expression Regulation DevelopmentalEmbryo MammalianCell biologyDoublecortinMice Inbred C57BL030104 developmental biologymedicine.anatomical_structureBromodeoxyuridinenervous systemSialic Acidsbiology.proteinTBR1Calcium-Calmodulin-Dependent Protein Kinase Type 2Microtubule-Associated Proteins030217 neurology & neurosurgerydescription
Neurogenesis in the healthy adult murine brain is based on proliferation and integration of stem/progenitor cells and is thought to be restricted to 2 neurogenic niches: the subventricular zone and the dentate gyrus. Intriguingly, cells expressing the immature neuronal marker doublecortin (DCX) and the polysialylated-neural cell adhesion molecule reside in layer II of the piriform cortex. Apparently, these cells progressively disappear along the course of ageing, while their fate and function remain unclear. Using DCX-CreERT2/Flox-EGFP transgenic mice, we demonstrate that these immature neurons located in the murine piriform cortex do not vanish in the course of aging, but progressively resume their maturation into glutamatergic (TBR1+, CaMKII+) neurons. We provide evidence for a putative functional integration of these newly differentiated neurons as indicated by the increase in perisomatic puncta expressing synaptic markers, the development of complex apical dendrites decorated with numerous spines and the appearance of an axonal initial segment. Since immature neurons found in layer II of the piriform cortex are generated prenatally and devoid of proliferative capacity in the postnatal cortex, the gradual maturation and integration of these cells outside of the canonical neurogenic niches implies that they represent a valuable, but nonrenewable reservoir for cortical plasticity.
year | journal | country | edition | language |
---|---|---|---|---|
2017-10-24 | Cerebral Cortex |