Search results for "TBR1"
showing 5 items of 5 documents
New scenarios for neuronal structural plasticity in non-neurogenic brain parenchyma: the case of cortical layer II immature neurons
2011
The mammalian central nervous system, due to its interaction with the environment, must be endowed with plasticity. Conversely, the nervous tissue must be substantially static to ensure connectional invariability. Structural plasticity can be viewed as a compromise between these requirements. In adult mammals, brain structural plasticity is strongly reduced with respect to other animal groups in the phylogenetic tree. It persists under different forms, which mainly consist of remodeling of neuronal shape and connectivity, and, to a lesser extent, the production of new neurons. Adult neurogenesis is mainly restricted within two neurogenic niches, yet some gliogenic and neurogenic processes a…
Immature excitatory neurons develop during adolescence in the human amygdala.
2019
The human amygdala grows during childhood, and its abnormal development is linked to mood disorders. The primate amygdala contains a large population of immature neurons in the paralaminar nuclei (PL), suggesting protracted development and possibly neurogenesis. Here we studied human PL development from embryonic stages to adulthood. The PL develops next to the caudal ganglionic eminence, which generates inhibitory interneurons, yet most PL neurons express excitatory markers. In children, most PL cells are immature (DCX+PSA-NCAM+), and during adolescence many transition into mature (TBR1+VGLUT2+) neurons. Immature PL neurons persist into old age, yet local progenitor proliferation sharply d…
Programming of neural progenitors of the adult subependymal zone towards a glutamatergic identity by Neurogenin2
2017
ABSTRACTWhile the adult subependymal zone (SEZ) harbors pools of distinct neural stem cells that generate different types of GABAergic interneurons, a small progenitor population in the dorsal SEZ expresses Neurog2 and gives rise to glutamatergic neurons. Here we investigated whether SEZ progenitors can be programmed towards glutamatergic neurogenesis through forced expression of Neurog2. Retrovirus-mediated expression of Neurog2 induced the glutamatergic neuron lineage markers Tbr2 and Tbr1 in cultured SEZ progenitors which subsequently differentiated into functional glutamatergic neurons. Likewise, retrovirus-mediated expression of Neurog2 in dividing SEZ progenitors within the adult SEZ …
Cellular Plasticity in the Adult Murine Piriform Cortex: Continuous Maturation of Dormant Precursors Into Excitatory Neurons
2017
Neurogenesis in the healthy adult murine brain is based on proliferation and integration of stem/progenitor cells and is thought to be restricted to 2 neurogenic niches: the subventricular zone and the dentate gyrus. Intriguingly, cells expressing the immature neuronal marker doublecortin (DCX) and the polysialylated-neural cell adhesion molecule reside in layer II of the piriform cortex. Apparently, these cells progressively disappear along the course of ageing, while their fate and function remain unclear. Using DCX-CreERT2/Flox-EGFP transgenic mice, we demonstrate that these immature neurons located in the murine piriform cortex do not vanish in the course of aging, but progressively res…
Expression of regulatory genes in the embryonic brain of a lizard and implications for understanding pallial organization and evolution
2017
The comparison of gene expression patterns in the embryonic brain of mouse and chicken is being essential for understanding pallial organization. However, the scarcity of gene expression data in reptiles, crucial for understanding evolution, makes it difficult to identify homologues of pallial divisions in different amniotes. We cloned and analyzed the expression of the genes Emx1, Lhx2, Lhx9, and Tbr1 in the embryonic telencephalon of the lacertid lizard Psammodromus algirus. The comparative expression patterns of these genes, critical for pallial development, are better understood when using a recently proposed six-part model of pallial divisions. The lizard medial pallium, expressing all…