6533b85dfe1ef96bd12bdd7c
RESEARCH PRODUCT
Copper-hydride nanoclusters with enhanced stability by N-heterocyclic carbenes
Chengyi HuNanfeng ZhengHannu HäkkinenHui ShenBoon K. TeoLingzheng WangDongxu CaoQingyuan WuSami MalolaOmar López-estradasubject
superatomMaterials scienceSuperatomkuparistabilityCondensed Matter PhysicsAtomic and Molecular Physics and OpticsFourier transform ion cyclotron resonancecopper-hydrideNanoclustersN-heterocylic carbeneCrystallographychemistry.chemical_compoundklusteritUltraviolet visible spectroscopymetal clusterschemistryCluster (physics)Copper hydrideGeneral Materials ScienceThermal stabilityDensity functional theorynanohiukkasetElectrical and Electronic Engineeringdescription
AbstractCopper-hydrides have been intensively studied for a long time due to their utilization in a variety of technologically important chemical transformations. Nevertheless, poor stability of the species severely hinders its isolation, storage and operation, which is worse for nano-sized ones. We report here an unprecedented strategy to access to ultrastable copper-hydride nanoclusters (NCs), namely, using bidentate N-heterocyclic carbenes as stabilizing ligands in addition to thiolates. In this work, a simple synthetic protocol was developed to synthesize the first large copper-hydride nanoclusters (NCs) stabilized by N-heterocyclic carbenes (NHCs). The NC, with the formula of Cu31(RS)25(NHC)3H6 (NHC = 1,4-bis(1-benzyl-1H-benzimidazol-1-ium-3-yl) butane, RS = 4-fluorothiophenol), was fully characterized by high resolution Fourier transform ion cyclotron resonance mass spectrum, nuclear magnetic resonance, ultra-violet visible spectroscopy, density functional theory (DFT) calculations and single-crystal X-ray crystallography. Structurally, the title cluster exhibits unprecedented Cu4 tetrahedron-based vertex-sharing (TBVS) superstructure (fusion of six Cu4 tetrahedra). Moreover, the ultrahigh thermal stability renders the cluster a model system to highlight the power of NHCs (even other carbenes) in controlling geometrical, electronic and surface structure of polyhydrido copper clusters.
year | journal | country | edition | language |
---|---|---|---|---|
2021-03-23 |