6533b85dfe1ef96bd12bde51

RESEARCH PRODUCT

Near-infrared radiative transfer modelling with different CH4 spectroscopic databases to retrieve atmospheric methane total amount

Vincent BoudonK. G. GribanovVyacheslav I. ZakharovK. M. FirsovTony GabardT. Yu. Chesnokova

subject

Materials science010504 meteorology & atmospheric sciencesInfrared spectroscopycomputer.software_genre01 natural sciencesAtmosphereAtmospheric radiative transfer codes0103 physical sciencesRadiative transferAstrophysics::Solar and Stellar AstrophysicsPhysics::Atmospheric and Oceanic PhysicsSpectroscopySpectroscopic databases0105 earth and related environmental sciencesRadiation010304 chemical physicsSpectrometerDatabaseAtmospheric methaneNear-infrared spectroscopyAtmospheric transmissionAtomic and Molecular Physics and Optics13. Climate actionInfrared windowAstrophysics::Earth and Planetary AstrophysicsMethanecomputer

description

International audience; Atmospheric methane content can be retrieved from measurements of solar radiation attenuated by the atmosphere in the near infrared spectral region where the space-borne and ground-based spectrometers carry out regular measurements. It is shown, in the present work, that the different spectroscopic databases can give significantly different results for both forward simulations of the atmospheric transmittance and the inverse problem solution to retrieve the CH4 total content in the atmosphere using spectra measured by ground-based FTIR spectrometer in the near infrared spectral region. These discrepancies and the problem of the reduction of their influence on the atmospheric radiation transfer calculations are discussed. A comparison of atmospheric ground-based measured and simulated spectra, modelled with different CH4 databases, is presented.

https://doi.org/10.1016/j.jqsrt.2011.08.005