6533b85dfe1ef96bd12bded6

RESEARCH PRODUCT

Special Splines of Exponential Type for the Solutions of Mass Transfer Problems in Multilayer Domains

Ilmars KangroAndris BuikisHarijs Kalis

subject

Box splineDiscretization3D problemMathematical analysisaveraging method010103 numerical & computational mathematicsSpace (mathematics)01 natural sciencesExponential type010101 applied mathematicsanalytical solutionAlternating direction implicit methodspecial splinesModeling and SimulationADI methodQA1-939Order (group theory)0101 mathematicsConstant (mathematics)AnalysisMathematicsMathematicsInterpolation

description

We consider averaging methods for solving the 3-D boundary-value problem of second order in multilayer domain. The special hyperbolic and exponential type splines, with middle integral values of piece-wise smooth function interpolation are considered. With the help of these splines the problems of mathematical physics in 3-D with piece-wise coefficients are reduced with respect to one coordinate to 2-D problems. This procedure also allows to reduce the 2-D problems to 1-D problems and the solution of the approximated problemsa can be obtained analytically. In the case of constant piece-wise coefficients we obtain the exact discrete approximation of a steady-state 1-D boundary-value problem. The solution of corresponding averaged 3-D initial-boundary value problem is also obtained numerically, using the discretization in space with the central diferences. The approximation of the 3-D nonstationary problem is based on the implicit finite-difference and alternating direction (ADI) methods. The numerical solution is compared with the analytical solution.

10.3846/13926292.2016.1182594https://journals.vgtu.lt/index.php/MMA/article/view/827