6533b85dfe1ef96bd12bdeda

RESEARCH PRODUCT

The effects of parasite age and intensity on variability in acanthocephalan-induced behavioural manipulation.

Loïc BollacheAlexandre BauerNathalie FranceschiThierry Rigaud

subject

0106 biological sciencesBehavior ControlMale[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyAgingAcanthocephalansHelminthiasisZoology010603 evolutionary biology01 natural sciences030308 mycology & parasitologyPredationAcanthocephalaHost-Parasite InteractionsBehavioural manipulation03 medical and health sciencesFish DiseasesPhotophobia[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisParasite hostingAnimals[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyAmphipodaTrophic level0303 health sciencesLife Cycle StagesbiologyHost (biology)Intermediate hostFishesbiology.organism_classificationGammaridsGammarus pulexInfectious DiseasesExperimental infectionsImmunologyParasitologyPomphorhynchus laevisFemaleAcanthocephala[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis

description

10 pages; International audience; Numerous parasites with complex life cycles are able to manipulate the behaviour of their intermediate host in a way that increases their trophic transmission to the definitive host. Pomphorhynchus laevis, an acanthocephalan parasite, is known to reverse the phototactic behaviour of its amphipod intermediate host, Gammarus pulex, leading to an increased predation by fish hosts. However, levels of behavioural manipulation exhibited by naturally-infected gammarids are extremely variable, with some individuals being strongly manipulated whilst others are almost not affected by infection. To investigate parasite age and parasite intensity as potential sources of this variation, we carried out controlled experimental infections on gammarids using parasites from two different populations. We first determined that parasite intensity increased with exposure dose, but found no relationship between infection and host mortality. Repeated measures confirmed that the parasite alters host behaviour only when it reaches the cystacanth stage which is infective for the definitive host. They also revealed, we believe for the first time, that the older the cystacanth, the more it manipulates its host. The age of the parasite is therefore a major source of variation in parasite manipulation. The number of parasites within a host was also a source of variation. Manipulation was higher in hosts infected by two parasites than in singly infected ones, but above this intensity, manipulation did not increase. Since the development time of the parasite was also different according to parasite intensity (it was longer in doubly infected hosts than in singly infected ones, but did not increase more in multi-infected hosts), individual parasite fitness could depend on the compromise between development time and manipulation efficiency. Finally, the two parasite populations tested induced slightly different degrees of behavioural manipulation.

10.1016/j.ijpara.2008.01.003https://pubmed.ncbi.nlm.nih.gov/18314127