6533b85dfe1ef96bd12be62f
RESEARCH PRODUCT
POLYNOMIAL GROWTH OF THE*-CODIMENSIONS AND YOUNG DIAGRAMS
Antonino GiambrunoS. Mishchenkosubject
CombinatoricsDiscrete mathematicsInvolution (mathematics)Filtered algebraAlgebra and Number TheoryMathematics::Commutative AlgebraFree algebraBounded functionHyperoctahedral groupRepresentation theoryComputer Science::Cryptography and SecurityMathematicsdescription
Let A be an algebra with involution * over a field F of characteristic zero and Id(A, *) the ideal of the free algebra with involution of *-identities of A. By means of the representation theory of the hyperoctahedral group Z 2wrS n we give a characterization of Id(A, *) in case the sequence of its *-codimensions is polynomially bounded. We also exhibit an algebra G 2 with the following distinguished property: the sequence of *-codimensions of Id(G 2, *) is not polynomially bounded but the *-codimensions of any T-ideal U properly containing Id(G 2, *) are polynomially bounded.
year | journal | country | edition | language |
---|---|---|---|---|
2001-03-21 | Communications in Algebra |