6533b85dfe1ef96bd12bf201

RESEARCH PRODUCT

On the numerical evaluation of algebro-geometric solutions to integrable equations

Christian KleinC. Kalla

subject

Pure mathematicsExplicit formulaeGeneral Physics and AstronomyFOS: Physical sciencesTheta functionHomology (mathematics)37K10 14Q05 35Q5501 natural sciencessymbols.namesakeMathematics - Algebraic Geometry[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesFOS: Mathematics0101 mathematics[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]010306 general physicsAlgebraic Geometry (math.AG)Mathematical PhysicsMathematicsPartial differential equationNonlinear Sciences - Exactly Solvable and Integrable SystemsApplied MathematicsRiemann surface010102 general mathematics[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Statistical and Nonlinear PhysicsMathematical Physics (math-ph)Nonlinear systemsymbolsAlgebraic curveExactly Solvable and Integrable Systems (nlin.SI)Symplectic geometry

description

Physically meaningful periodic solutions to certain integrable partial differential equations are given in terms of multi-dimensional theta functions associated to real Riemann surfaces. Typical analytical problems in the numerical evaluation of these solutions are studied. In the case of hyperelliptic surfaces efficient algorithms exist even for almost degenerate surfaces. This allows the numerical study of solitonic limits. For general real Riemann surfaces, the choice of a homology basis adapted to the anti-holomorphic involution is important for a convenient formulation of the solutions and smoothness conditions. Since existing algorithms for algebraic curves produce a homology basis not related to automorphisms of the curve, we study symplectic transformations to an adapted basis and give explicit formulae for M-curves. As examples we discuss solutions of the Davey-Stewartson and the multi-component nonlinear Schr\"odinger equations.

https://hal.archives-ouvertes.fr/hal-00601630/document