6533b85dfe1ef96bd12bf232
RESEARCH PRODUCT
1,3-Alternate calix[4]arenes, selectively functionalized by amino groups
Crenguta DanilaMichael BolteVolker Böhmersubject
PhthalimidesChemistryStereochemistryOrganic ChemistryCleavage (embryo)BiochemistryHydrolysischemistry.chemical_compoundYield (chemistry)Proton NMRNitroMoleculePhysical and Theoretical ChemistryMethylenedescription
General strategies are described to synthesize calix[4]arenes which are fixed in the 1,3-alternate conformation and substituted selectively by amino groups. These derivatives are useful starting materials for the attachment of various groups via amide bonds, as demonstrated by several examples, but may be converted also to ureas, imides or azomethines. Four amino groups may be attached to the narrow rim via(several) methylene groups as spacer by O-alkylation with omega-bromophthalimides or omega-bromonitriles. From the resulting tetraethers the amino functions are obtained by cleavage with hydrazine or by hydrolysis, allowing a selective functionalisation of both sides of the molecule (phenolic units A, C versus B, D). Amino functions at the wide rim are introduced by ipso-nitration of the respective t-butylcalix[4]arene derivatives and subsequent reduction. Selective ipso-nitration of a 1,3-diether, followed by O-alkylation with allylbromide to obtain the tetraether in the 1,3-alternate conformation, hydrogenation of allyl and nitro groups (in one step), protection of the amino functions as phthalimides followed by ipso-nitration of the remaining t-butyl phenol rings, allows again to distinguish both sides of the molecule (units A, C versus B, D). Reaction of a wide rim tetraamine in the 1,3-alternate conformation by Boc-anhydride allows not only to obtain the mono- and tri-Boc derivative, but also in nearly 60% yield the C2-symmetrical di-Boc derivative, in which two adjacent phenolic units are protected (distinction of A, B from C, D). This paves the way for the preparation of chiral derivatives or assemblies. O-Alkylation with omega-bromophthalimides followed by ipso-nitration leads to precursors for octaamines in the 1,3-alternate conformation, in which the potential amino functions on both rims can be selectively "activated" by reduction or hydrazinolysis. The structures of the newly synthesized molecules were mainly confirmed by their 1H NMR spectra, which allow a distinction from isomeric derivatives in the cone and partial cone conformation. Single crystal X-ray analyses were obtained for two analogous derivatives in the 1,3-alternate conformation (27, n = 3,4), an isomeric compound in the cone conformation (27, n = 3,4), and a derivative in the partial cone conformation (11).
year | journal | country | edition | language |
---|---|---|---|---|
2004-12-17 | Org. Biomol. Chem. |