6533b85dfe1ef96bd12bf26d
RESEARCH PRODUCT
Deciphering carbon sources of mussel shell carbonate under experimental ocean acidification and warming.
Guojun YangYuting CongLi WangLianshun WangYanan LuLiqiang ZhaoLiqiang ZhaoLiqiang Zhaosubject
0106 biological sciences010504 meteorology & atmospheric sciencesMytilus edulisOceans and SeasCarbonateschemistry.chemical_elementAquatic ScienceOceanography01 natural scienceschemistry.chemical_compoundCalcification Physiologichemic and lymphatic diseasesDissolved organic carbonAnimalsSeawater0105 earth and related environmental sciencesCarbon IsotopesChemistry010604 marine biology & hydrobiologyOcean acidificationGeneral MedicineMusselHydrogen-Ion ConcentrationPollutionIsotopes of carbonEnvironmental chemistryCarbonateSeawaterCarbonBlue musselcirculatory and respiratory physiologydescription
Abstract Ocean acidification and warming is widely reported to affect the ability of marine bivalves to calcify, but little is known about the underlying mechanisms. In particular, the response of their calcifying fluid carbonate chemistry to changing seawater carbonate chemistry remains poorly understood. The present study deciphers sources of the dissolved inorganic carbon (DIC) in the calcifying fluid of the blue mussel (Mytilus edulis) reared at two pH (8.1 and 7.7) and temperature (16 and 22 °C) levels for five weeks. Stable carbon isotopic ratios of seawater DIC, mussel soft tissues and shells were measured to determine the relative contribution of seawater DIC and metabolically generated carbon to the internal calcifying DIC pool. At pH 8.1, the percentage of seawater DIC synthesized into shell carbonate decreases slightly from 83.8% to 80.3% as temperature increases from 16 to 22 °C. Under acidified conditions, estimates of percent seawater DIC incorporation decreases clearly to 65.6% at 16 °C and to 62.3% at 22 °C, respectively. These findings indicate that ongoing ocean acidification and warming may interfere with the calcification physiology of M. edulis through interfering with its ability to efficiently extract seawater DIC to the calcifying front.
year | journal | country | edition | language |
---|---|---|---|---|
2018-11-01 | Marine environmental research |