6533b85dfe1ef96bd12bf2c7

RESEARCH PRODUCT

Hyperbolic character of the angular moment equations of radiative transfer and numerical methods

José A. PonsJosé A. PonsJuan A. MirallesJ. Ma. Ibáñez

subject

PhysicsConservation lawAngular momentumNumerical analysisAstrophysics (astro-ph)Mathematical analysisClosure (topology)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysicsCausality (physics)Character (mathematics)Space and Planetary ScienceRadiative transferCircular symmetry

description

We study the mathematical character of the angular moment equations of radiative transfer in spherical symmetry and conclude that the system is hyperbolic for general forms of the closure relation found in the literature. Hyperbolicity and causality preservation lead to mathematical conditions allowing to establish a useful characterization of the closure relations. We apply numerical methods specifically designed to solve hyperbolic systems of conservation laws (the so-called Godunov-type methods), to calculate numerical solutions of the radiation transport equations in a static background. The feasibility of the method in any kind of regime, from diffusion to free-streaming, is demonstrated by a number of numerical tests and the effect of the choice of the closure relation on the results is discussed.

https://doi.org/10.1046/j.1365-8711.2000.03679.x