6533b85efe1ef96bd12bfcde

RESEARCH PRODUCT

Dimension estimates on circular (s,t)-Furstenberg sets

Jiayin Liu

subject

General MathematicsMathematics::Classical Analysis and ODEsMathematics::General TopologyMetric Geometry (math.MG)Hausdorff dimensionArticlesMathematics - Metric GeometryMathematics - Classical Analysis and ODEscircular Furstenberg setClassical Analysis and ODEs (math.CA)FOS: MathematicsulottuvuusFurstenberg set

description

In this paper, we show that circular $(s,t)$-Furstenberg sets in $\mathbb R^2$ have Hausdorff dimension at least $$\max\{\frac{t}3+s,(2t+1)s-t\} \text{ for all $0<s,t\le 1$}.$$ This result extends the previous dimension estimates on circular Kakeya sets by Wolff.

10.54330/afm.128073https://afm.journal.fi/article/view/128073