6533b85efe1ef96bd12bfd57

RESEARCH PRODUCT

Searching for hexagonal analogues of the half-metallic half-Heusler XYZ compounds

Claudia FelserRam SeshadriFrederick CasperC. Peter SebastianRainer Pöttgen

subject

Condensed Matter - Materials ScienceMaterials scienceAcoustics and UltrasonicsMagnetoresistanceMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesIonic bondingContext (language use)Electronic structureCrystal structureCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCondensed Matter - Other Condensed MatterCrystallographyFerromagnetismCharge carrierOther Condensed Matter (cond-mat.other)Wurtzite crystal structure

description

The XYZ half-Heusler crystal structure can conveniently be described as a tetrahedral zinc blende YZ structure which is stuffed by a slightly ionic X species. This description is well suited to understand the electronic structure of semiconducting 8-electron compounds such as LiAlSi (formulated Li$^+$[AlSi]$^-$) or semiconducting 18-electron compounds such as TiCoSb (formulated Ti$^{4+}$[CoSb]$^{4-}$). The basis for this is that [AlSi]$^-$ (with the same electron count as Si$_2$) and [CoSb]$^{4-}$ (the same electron count as GaSb), are both structurally and electronically, zinc-blende semiconductors. The electronic structure of half-metallic ferromagnets in this structure type can then be described as semiconductors with stuffing magnetic ions which have a local moment: For example, 22 electron MnNiSb can be written Mn$^{3+}$[NiSb]$^{3-}$. The tendency in the 18 electron compound for a semiconducting gap -- believed to arise from strong covalency -- is carried over in MnNiSb to a tendency for a gap in one spin direction. Here we similarly propose the systematic examination of 18-electron hexagonal compounds for semiconducting gaps; these would be the "stuffed wurtzite" analogues of the "stuffed zinc blende" half-Heusler compounds. These semiconductors could then serve as the basis for possibly new families of half-metallic compounds, attained through appropriate replacement of non-magnetic ions by magnetic ones. These semiconductors and semimetals with tunable charge carrier concentrations could also be interesting in the context of magnetoresistive and thermoelectric materials.

10.1088/0022-3727/41/3/035002http://arxiv.org/abs/0710.5769