0000000000018020
AUTHOR
Frederick Casper
Resolving the Fundamentals of Magnetotransport in Metals with Ultrafast Terahertz Spectroscopy
Using terahertz spectroscopy we directly resolved the fundamentals of spin-dependent conductivity in ferromagnetic metals. We quantified the differences in conduction by Fermi-level electrons with opposite spins on the sub-100 fs timescale of electron momentum scattering.
Giant Magnetoresistance in Rare Earth Compounds
Half-metallic ferromagnetism with high magnetic moment and high Curie temperature in Co$_2$FeSi
Co$_2$FeSi crystallizes in the ordered L2$_1$ structure as proved by X-ray diffraction and M\"o\ss bauer spectroscopy. The magnetic moment of Co$_2$FeSi was measured to be about $6\mu_B$ at 5K. Magnetic circular dichroism spectra excited by soft X-rays (XMCD) were taken to determine the element specific magnetic moments of Co and Fe. The Curie temperature was measured with different methods to be ($1100\pm20$)K. Co$_2$FeSi was found to be the Heusler compound as well as the half-metallic ferromagnet with the highest magnetic moment and Curie temperature.
Topological Insulators from a Chemist's Perspective
Topology and chemistry are deeply entangled subjects, whichmanifests in the way chemists like to think and approachproblems. Although not at first glance, topology allows thecategorizationoffundamentalinherentpropertiesofthehugenumber of different chemical compounds, carving out theunique features of a class of materials of different complexity,a topic which Turro worked out in his treatise on geometricaland topological thinking in chemistry.
Probing giant magnetoresistance with THz spectroscopy
We observe a giant magnetoresistance effect in CoFe/Cu-based multistack using THz time-domain spectroscopy. The magnetic field-dependent dc conductivity, electron scattering time, as well as spin-asymmetry parameter of the structure are successfully determined.
Giant magnetoresistance in semiconducting DyNiBi
Abstract The semiconducting half-Heulser compound DyNiBi shows a negative giant magnetoresistance (GMR) below 200 K. Except for a weak deviation, this magnetoresistance scales roughly with the square of the magnetization in the paramagnetic state, and is related to the metal–insulator transition. At low temperature, a positive magnetoresistance is found, which can be suppressed by high fields. The magnitude of the positive magnetoresistance changes slightly with the amount of impurity phase.
Giant magnetoresistance and extraordinary magnetoresistance in inhomogeneous semiconducting DyNiBi
The semiconducting half-Heulser compound DyNiBi shows a negative giant magnetoresistance (GMR) below 200 K. Except for a weak deviation, this magnetoresistance scales roughly with the square of the magnetization in the paramagnetic state, and is related to the metal-insulator transition. At low temperature, a positive magnetoresistance is found, which can be suppressed by high fields. The magnitude of the positive magnetoresistance changes slightly with the amount of impurity phase.
Dünne epitaktische Filme der Heusler-Phase Co2Cr0,6Fe0,4Al
Topological Insulators from a Chemist’s Perspective
Topology and chemistry are deeply entangled subjects, whichmanifests in the way chemists like to think and approachproblems. Although not at first glance, topology allows thecategorizationoffundamentalinherentpropertiesofthehugenumber of different chemical compounds, carving out theunique features of a class of materials of different complexity,a topic which Turro worked out in his treatise on geometricaland topological thinking in chemistry.
Crystal Structure of New Heusler Compounds
Heusler compounds are promising materials in many fields of contemporary research. The spectrum of their possible applications ranges from magnetic and magneto-mechanical materials over semiconductors and thermoelectrics to superconductors. An important feature of the Heusler compounds is the possibility of controlling the valence electron concentration by partial substitution of elements. On the other hand, the properties also depend on the degree of ordering of the the crystal structure. In general, Heusler compounds crystallize in the Cu2MnAl-type structure but in many cases certain types of disorder are observed. In this paper a detailed description of the different types of disordered …
Semiconducting half-Heusler and LiGaGe structure type compounds
Compounds with LiAlSi (half-Heusler) and LiGaGe structure types have been investigated by means of band structure calculations. The LiAlSi structure type is known as the half-Heusler structure type, whereas LiGaGe is a closely related hexagonal variant. A remarkable feature of some XYZ half-Heusler compounds with 8 and 18 valence electrons is, that despite being composed of only metallic elements, they are semiconductors. More than 100 semiconducting compounds within these structure types are known. LiGaGe compounds have an additional degree of freedom, namely the degree of puckering of the layers. These compounds can become semiconducting at a certain degree of puckering. Half-metallic beh…
Half-Heusler compounds: novel materials for energy and spintronic applications
Half-Heusler compounds are an impressive class of materials with a huge potential for different applications such as future energy applications and for spintronics. The semiconducting Heusler compounds can be identified by the number of valence electrons. The band gap can be tuned between 0 and 4 eV by the electronegativity difference of the constituents. Magnetism can be introduced in these compounds by using rare-earth elements, manganese or ‘electron’ doping. Thus, there is a great interest in the fields of thermoelectrics, solar cells and diluted magnetic semiconductors. The combination of different properties such as superconductivity and topological edge states leads to new multifunct…
Strong reduction of the Korringa relaxation in the spin-density wave regime ofEuFe2As2observed by electron spin resonance
Electron spin resonance measurements in ${\text{EuFe}}_{2}{\text{As}}_{2}$ single crystals revealed an absorption spectrum of a single resonance with Dysonian line shape. Above the spin-density wave (SDW) transition at ${T}_{\text{SDW}}=190\text{ }\text{K}$ the spectra are isotropic and the Eu spins relax via the conduction electrons resulting in a Korringa-type increase in the linewidth. Below ${T}_{\text{SDW}}$, a distinct anisotropy develops and the relaxation behavior of the Eu spins changes drastically into one with characteristic properties of a magnetic insulating system, where dipolar and crystal-field interactions dominate. This indicates a spatial confinement of the conduction ele…
Structure and Properties of GdAuSn and the GdAuSn/MnAuSn System
The crystal structure of GdAuSn was refined by means of single crystal X-ray diffraction. Band structure calculations based on the structural data confirmed the antiferromagnetic ground state and the metallic behaviour of GdAuSn. 119mSn, 155Gd and 197Au Mossbauer spectroscopic studies were used to verify the values of the hyperfine parameters that were given by the band structure calculations. Band structure calculations of MnAuSn confirmed that this half-Heusler compound belongs to the family of half-metallic ferromagnets. Magnetic susceptibility, conductivity and Mossbauer studies were used to characterize granular material based on the half-Heusler ferromagnet MnAuSn in the antiferromagn…
Topological insulators and thermoelectric materials
Topological insulators (TIs) are a new quantum state of matter which have gapless surface states inside the bulk energy gap. Starting with the discovery of two dimensional TIs, the HgTe-based quantum wells, many new topological materials have been theoretically predicted and experimentally observed. Currently known TI materials can possibly be classified into two families, the HgTe family and the Bi2Se family. The signatures found in the electronic structure of a TI also cause these materials to be excellent thermoelectric materials. On the other hand, excellent thermoelectric materials can be also topologically trivial. Here we present a short introduction to topological insulators and the…
Topological insulators and thermoelectric materials
Topological insulators (TIs) are a new quantum state of matter which have gapless surface states inside the bulk energy gap. Starting with the discovery of two dimensional TIs, the HgTe-based quantum wells, many new topological materials have been theoretically predicted and experimentally observed. Currently known TI materials can possibly be classified into two families, the HgTe family and the Bi2Se family. The signatures found in the electronic structure of a TI also cause these materials to be excellent thermoelectric materials. On the other hand, excellent thermoelectric materials can be also topologically trivial. Here we present a short introduction to topological insulators and the…
Systematical, experimental investigations on LiMgZ (Z= P, As, Sb) wide band gap semiconductors
This work reports on the experimental investigation of the wide band gap compounds LiMgZ (Z = P, As, Sb), which are promising candidates for opto-electronics and anode materials for Lithium batteries. The compounds crystallize in the cubic (C1_b) MgAgAs structure (space group F-43m). The polycrystalline samples were synthesized by solid state reaction methods. X-ray and neutron diffraction measurements show a homogeneous, single-phased samples. The electronic properties were studied using the direct current (DC) method. Additionally UV-VIS diffuse reflectance spectra were recorded in order to investigate the band gap nature. The measurements show that all compounds exhibit semiconducting be…
Microstructure Design for Fast Lifetime Measurements of Magnetic Tunneling Junctions
The estimation of the reliability of magnetic field sensors against failure is a critical point concerning their application for industrial purposes. Due to the physical stochastic nature of the failure events, this can only be done by means of a statistical approach which is extremely time consuming and prevents a continuous observation of the production. Here, we present a novel microstructure design for a parallel measurement of the lifetime characteristics of a sensor population. By making use of two alternative designs and the Weibull statistical distribution function, we are able to measure the lifetime characteristics of a CoFeB/MgO/CoFeB tunneling junction population. The main param…
Eight‐Coordinate Endohedral Rhenium, Osmium and Iridium Atoms in Rare‐Earth Halide Cluster Complexes
Endohedral (interstitial) atoms are essential for almost all of the rare-earth halide cluster complexes. Most of these contain octahedral clusters, some are isolated, but the majority exhibits condensation by common edges to structures of higher dimensionality. Higher coordination numbers of the endohedral atoms are rare. Four examples of extended cluster complexes with eight-coordinate endohedral atoms of sixth-period elements (Re, Os, Ir) are presented. In the quasi-isostructural, non-isotypic halides (ReGd 4 )Br 4 and {OsSc 4 }-Cl 4 , square antiprisms of gadolinium and scandium atoms, respectively, are connected by two common faces to chains, surrounded and loosely connected by halogeni…
Magnetic and Electronic Properties ofRENiBi (RE = Pr, Sm, Gd-Tm, Lu) Compounds
Resistivity and magnetic measurements were used to examine the ternary rare earth compounds RENiBi (RE = Pr, Sm, Gd-Tm, Lu). These compounds order antiferromagnetically with TN below 16 K (RE = Pr, Sm, Gd-Tm) or are paramagnetic (LuNiBi). For some of these compounds a metal–insulator transition was found. The metal–insulator transition temperature depends strongly on the preparation conditions. Both the magnetic ground states and the resistance behavior are in good agreement with electronic band structure calculations.
Fabrication and characterization of semiconducting half Heusler YPtSb thin films
The semiconducting half Heusler compound YPtSb was predicted theoretically to be capable of changing into topological insulator under proper strain. In this work, p type semiconducting half-Heusler YPtSb thin films were prepared by magnetron co-sputtering method from a specially designed target for the first time. Textured structure with (111) plane paralleling with (001) of MgO substrate was observed when YPtSb thin films were grown on MgO (100) substrate at 600{\deg}C.Electrical measurements show that the resistivity of YPtSb films decreases with increasing temperature, indicating a semiconductor-like behavior. The carrier density is as high as 1.15 X 10^21 cm-3 at 300 K. The band gap of …
Tetragonal-to-orthorhombic structural phase transition at 90 K in the superconductor Fe(1.01)Se.
In this Letter we show that superconducting ${\mathrm{Fe}}_{1.01}\mathrm{Se}$ undergoes a structural transition at 90 K from a tetragonal to an orthorhombic phase but that nonsuperconducting ${\mathrm{Fe}}_{1.03}\mathrm{Se}$ does not. High resolution electron microscopy at low temperatures further reveals an unexpected additional modulation of the crystal structure of the superconducting phase that involves displacements of the Fe atoms, and that the nonsuperconducting composition shows a different, complex nanometer-scale structural modulation. Finally, we show that magnetism is not the driving force for the phase transition in the superconducting phase.
Structural and magnetic properties of Fe2CoGa Heusler nanoparticles
Abstract Fe2CoGa Heusler nanoparticles are synthesized by a chemical method. The structure and magnetic properties of Fe2CoGa Heusler nanoparticles are investigated by x-ray diffraction, extended x-ray absorption fine structure and Mössbauer spectroscopy. The crystal structure of Fe2CoGa nanoparticles is described by the X-type structure (prototype: Li2AgSb). Magnetic measurements reveal the presence of small Fe2CoGa nanoparticles and lower magnetic moments compared with the theoretically predicted values.
Design Scheme of New Tetragonal Heusler Compounds for Spin-Transfer Torque Applications and its Experimental Realization
Band Jahn-Teller type structural instabilities of cubic Mn(2)YZ Heusler compounds causing tetragonal distortions can be predicted by ab initio band-structure calculations. This allows for identification of new Heusler materials with tunable magnetic and structural properties that can satisfy the demands for spintronic applications, such as in spin-transfer torque-based devices.
Thin epitaxial films of the Heusler compound
Abstract We prepared thin films of the Heusler compound Co 2 Cr 0.6 Fe 0.4 Al with the B2 structure on a-plane (1 1 2 ¯ 0) Al 2 O 3 by sputtering. Films grown at high temperatures ( T ⩾ 600 ∘ C ) on Al 2 O 3 are fully epitaxial with the (1 1 0) and (1 1 ¯ 0) planes of the film parallel to the (1 1 2 ¯ 0) and (0 0 0 1) planes of the substrate, respectively. These epitaxial films possess a higher surface roughness than films grown at room temperature. The films show nearly rectangular hysteresis loops with coercive fields of the order of 10 mT. Magnetooptical Kerr measurements show an in-plane anisotropy of the magnetization with the easy axis in { 0 0 1 } direction. Hall measurements s…
Magneto-optical characterization of single crystalline Co2FeAl0.4Si0.6thin films on MgO(1 0 0) substrates with Cr and MgO seed layers
We report on the experimental investigation of the influence of a seed layer on the magnetic properties of the full-Heusler alloy Co2FeAl0.4Si0.6 (CFAS). The studied magnetic films are grown epitaxially on MgO (1 0 0) substrates with Cr and/or MgO seed layers. By employing magneto-optical Kerr effect magnetometry we show that magnetic anisotropy can be tuned by choosing the proper seed layer. The results on CFAS show an overall uniaxial anisotropy plus a biaxial contribution which depends on the seed layer. In addition, if grown on MgO, a sharp increase in the coercive field HC at a series of angles symmetric with respect to the easy axis is present. Scanning Kerr-microscope imaging is perf…
Probing the Size Effect of Co2FeGa-SiO2@C Nanocomposite Particles Prepared by a Chemical Approach
In this contribution, we report the chemical synthesis of carbon coated, silica supported Co2FeGa (Co2FeGa-SiO2@C) nanocomposite particles. The particle size of Co2FeGa particles can be tuned by varying the amount of silica supports. The dependences of the crystal structure and magnetic properties on particle size have been investigated by synchrotron radiation based X-ray diffraction (XRD), X-ray absorption fine structure (XAFS) spectroscopy, transmission electron microscope (TEM), 57Fe Mossbauer spectroscopy, and superconducting quantum interference device (SQUID). The superparamagnetic critical size of Co2FeGa Heusler nanoparticles is found to be ∼17 nm by correlating the TEM derived par…
Searching for hexagonal analogues of the half-metallic half-Heusler XYZ compounds
The XYZ half-Heusler crystal structure can conveniently be described as a tetrahedral zinc blende YZ structure which is stuffed by a slightly ionic X species. This description is well suited to understand the electronic structure of semiconducting 8-electron compounds such as LiAlSi (formulated Li$^+$[AlSi]$^-$) or semiconducting 18-electron compounds such as TiCoSb (formulated Ti$^{4+}$[CoSb]$^{4-}$). The basis for this is that [AlSi]$^-$ (with the same electron count as Si$_2$) and [CoSb]$^{4-}$ (the same electron count as GaSb), are both structurally and electronically, zinc-blende semiconductors. The electronic structure of half-metallic ferromagnets in this structure type can then be d…
Pressure-restored superconductivity in Cu-substituted FeSe
Copper doping of FeSe destroys its superconductivity at ambient pressure, even at low doping levels. Here we report the pressure-dependent transport and structural properties of Fe${}_{1.01\ensuremath{-}x}$Cu${}_{x}$Se with 3$%$ and 4$%$ Cu doping and find that the superconductivity is restored. Metallic resistivity behavior, absent in Cu-doped FeSe, is also restored. At the low pressure of 1.5 GPa, superconductivity is seen at 6 K for 4$%$ Cu doping, somewhat lower than the 8 K ${T}_{c}$ of undoped FeSe. ${T}_{c}$ reaches its maximum of 31.3 K at 7.8 GPa, lower than the maximum superconducting temperature in the undoped material under pressure (${T}_{c}$ max of 37 K) but still very high. X…
Influence of the MgO barrier thickness on the lifetime characteristics of magnetic tunnelling junctions for sensors
Magnetic tunnelling junctions increasingly enter the market for magnetic sensor applications. Thus, technological parameters such as the lifetime characteristics become more and more important. Here, an analysis of the lifetime characteristics of magnetic tunnelling junctions using the Weibull statistical distribution for CoFeB/MgO/CoFeB junctions is presented. The Weibull distribution is governed by two parameters, the characteristic lifetime η of the population and the shape parameter β, which gives information about the presence of an infant mortality. The suitability of the Weibull distribution is demonstrated for the description of dielectric breakdown processes in MgO-based tunnelling…
Effect of pressure on superconductivity in NaAlSi
The ternary superconductor NaAlSi, isostructural with LiFeAs, the ``111'' iron pnictide superconductor, is investigated under pressure. The structure remains stable up to 15 GPa. Resistivity and susceptibility measurements show an increase of ${T}_{c}$ up to 2 GPa, followed by a decrease until superconductivity disappears at 4.8 GPa. Band structure calculations show that pressure should have a negligible effect on the electronic structure and the Fermi surface and thus the disappearance of superconductivity under pressure must have a different origin. We compare the electronic structure of NaAlSi under pressure with that of nonsuperconducting isostructural NaAlGe.
Magnetic properties of GdPdSb and GdNiSb studied by 155Gd-Mössbauer spectroscopy
Abstract 155 Gd-Mossbauer spectroscopy was applied to study the magnetic properties of GdPdSb with hexagonal LiGaGe structure and of GdNiSb in the cubic MgAgAs-type structure as well as in the hexagonal AlB 2 -type structure. In GdPdSb magnetic ordering is observed at 13.0 K with indications of a tilted spin structure at lower temperatures. In the cubic phase of GdNiSb magnetic ordering is observed at 9.5 K and in the hexagonal phase around 3.5 K. These results are discussed in conjunction with previous investigations of these samples.
Accessing the fundamentals of magnetotransport in metals with terahertz probes
Spin-dependent conduction in metals underlies all modern magnetic memory technologies, such as giant magnetoresistance (GMR). The charge current in ferromagnetic transition metals is carried by two non-mixing populations of sp-band Fermi-level electrons: one of majority-spin and one of minority-spin. These electrons experience spin-dependent momentum scattering with localized electrons, which originate from the spin-split d-band. The direct observation of magnetotransport under such fundamental conditions, however, requires magnetotransport measurements on the same timescale as the electron momentum scattering, which takes place in the sub-100 fs regime. Using terahertz electromagnetic prob…
CSD 1784742: Experimental Crystal Structure Determination
Related Article: Leslie Schoop, Lukas Müchler, Jennifer Schmitt, Vadim Ksenofontov, Sergey Medvedev, Jürgen Nuss, Frederick Casper, Martin Jansen, R. J. Cava, Claudia Felser|2012|Phys.Rev.B|86|174522|doi:10.1103/PhysRevB.86.174522